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Abstract  

Following the 1993 Amendment to the European Commission’s Capital Adequacy 
Directive, and the 1998 implementation of a similar approach in the US, banks are 
currently required to hold capital against market risk. There are now created the 
opportunities for banks to use their internal value at risk models, as opposed to the 
standard regulatory formulae, as a basis for setting capital charges. A wider use of VaR 
models also in emerging market economies could be an important step towards greater 
stability in the banking sector and further development of solid financial markets. In a 
number of emerging markets, banks are already allowed to use VaR techniques in order 
to assess and manage their exposure to adverse changes in the market conditions. 

As prospects for accession to the EU increase, and with the launching of the euro, CEE 
transition economies bank risk management practices and policies are likely to face new 
pressures for further mutation. New members of the EU will be expected to adopt the 
aquis communitaire, and this will include the common framework for treating risk and 
the system of capital requirements. Although the supervision authority does not indicate a 
specific approach to be used, the penalties associated with internal model failures in 
accurately forecasting the distribution of future losses raise the issue of model selection. 

This paper examines the empirical performance of several value at risk estimation 
techniques employed to model bank foreign exchange exposure perceived from a banking 
regulation perspective. We compare the performances of each model through a 
simulation methodology for a random portfolio containing spot position in five 
currencies against ROL, daily adjusted over a sample period of 22 months. Performance 
assessment is based on a range of tests that address the relative size and variability of 
VaR estimates, accuracy features from a backtesting perspective and nevertheless 
efficiency in setting capital charges. 

We found an important dispersion between different models VaR estimates, but no model 
was identified as being insufficiently conservative in its risk measurement. The paper 
concludes that, although the tests are not precise enough to allow a categorical 
discrimination between models, they do provide useful diagnostic information for 
evaluating model performances. 
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Introduction  

‘Weaknesses in the banking system of a country, whether developing or developed, can 
threaten financial stability both within that country and internationally’ the Basle Committee 
Core Principles. In the recent years we have witnessed an unprecedented surge in the 
usage of risk management practices, with the VaR based risk management emerging as 
the industry standard by choice or by regulation.  

The need to improve the strength of financial systems has attracted growing international 
concern. Numerous official bodies have recently been examining ways to strengthen 
financial stability throughout the world and notably in the emerging market economies. In 
the “Recommendations for Public Disclosure of Trading and Derivatives Activities of Banks 
and Securities Firms”, the Basle Committee on Banking Supervision and the Technical 
Committee of the International Organization of Securities Commissions ‘consider 
transparency of banks and securities firms activities to be a key element of an effectively 
supervised financial system’. Public statements made by the G-7 Heads of State and 
Finance Ministers recognize that improved transparency of institutions’ financial conditions, 
performance, business activities, risk profile and risk management practices, facilitates 
effective market discipline by promoting safety and soundness in individual institutions and 
financial system as a hole. 

The increase in the relative importance of trading risk in bank portfolios has obliged 
regulators to reconsider the system of capital requirements agreed in the 1988 Basle 
Capital Accord. The common framework for treating risk designed in 1988 aimed to limit 
the credit risk, ignoring some important features related to trading risk and off-balance 
sheet positions. The European Commission’s Capital Adequacy Directive (1993) 
established EU minimum requirements for the trading books of banks and securities firms. 
They proposed a system comprising two alternative ways of calculating trading books 
capital: the ‘standardized’ and the ‘alternative’ model. The standardized approach is a set 
of rules that assign risk charges to specific instruments and specify how these charges are 
to be aggregated into an overall market risk capital requirement. The internal models 
approach determines market risk capital charges on potential loss estimates generated by 
banks’ internal risk measurement models. 

Following the 1993 Amendment to the European Commission’s Capital Adequacy 
Directive, and the 1998 implementation of a similar approach by the Federal Reserves, 
banks are currently required to hold capital against market risk defined as the risk that 
changes in the market conditions (prices and volatilities) would adversely affect the 
portfolio value of a bank. There are now created the opportunities for banks to use their 
internal value at risk models, as opposed to the standard regulatory formulae, as basis for 
setting capital charges. But VaR concept is also widely applied beyond the regulatory 
compliance, in determining trading limits and capital allocation decisions.    

In a widely used definition, value at risk measures the potential loss on a portfolio over a 
specified period that will not be exceeded with a given probability. A VaR measure is 
dependent on two parameters: the holding period and the significance level. Current 
recommendations of the Basle Committee are that 1% VaR measures, calculated over a 
holding period of 10 working days are used to calculate capital charges.    
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A formal definition of VaR may be written as: 

α=−<∆ )(Pr VARPob  

where P∆ denotes the portfolio change during the holding period and α  represents the 
significance level. 

If we let )( PN ∆  represent the cumulative probability distribution function of portfolio 
returns, then 

)(1 α−= NVaR  where )(1 α−N  denotes the inverse cumulative distribution function. 

The standards for in-the-house model construction imply that banks must calculate the 
distribution of their losses over a ten-day holding period using a panel of historical data of 
at least twelve months and must yield capital requirements sufficient to cover losses on 
99% of occasions. As a check on the accuracy of models, under the proposed alternative 
Basle approach, the supervisors will carry out back testing, the comparison of actual 
trading results with model generated risk measures. The Basle Committee proposed that 
the capital requirements should be equivalent to the higher of the current VaR estimate and 
the average VaR estimate over the previous 60 days multiplied by three. 

According to the Basle committee recommendations, market risk capital charges, denoted 
by MRCt are determined as follows:  

)]1,10(
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where VaRt(10,1) is the current VaRt estimate over a ten days holding period with a 0.01 
significance level and M represents the multiplier indicated by the supervision authority to 
reflect the quality of risk management estimation models and practices for each bank in the 
system.  

Strengthening the financial system’s ability to evaluate and manage market risk has been 
usually identified as a precondition for further market integration. This entails improving the 
internal risk management of individual financial institutions on the basis of VaR models, in 
order to assess their balance sheet vulnerability with respect to changes in asset prices 
such as exchange rates, interest rates or equity prices. As a result, the risk of international 
illiquidity should be reduced. A reason for the excessive short-term foreign borrowing in 
many of the emerging economies could be the result of an inadequate risk management. In 
a number of emerging market countries important steps have already been taken in this 
regard and in some of them banks are required to use VaR techniques in order to assess 
and manage their exposure to adverse changes in the market conditions. A wider use of 
VaR models in emerging market economies could be an important step towards greater 
stability in the banking sector and further development of solid financial markets.  

In the transition process, the usual elements of a well-functioning regulatory/supervisory 
system: ‘adequate accounting and disclosure requirements, adequate capital standards, 
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prompt corrective action, careful monitoring of the institution’s risk management procedures 
and monitoring of financial institutions compliance with the regulations’ Mishkin 1999 are 
considered a prerequisite toward further integration. As prospects for accession of CEE 
transition economies to the EU increase, and with the launching of the euro, bank risk 
management practices and policies are likely to face new pressures for further mutation. 
New members of the EU will be expected to adopt the aquis communitaire, and this will 
include the common framework for treating risk and the system of capital requirements.  

The existent academic literature has been mostly concerned with measuring VaR (Duffie 
and Pan 1997, Linsmeier and Pearson 1996, Danielsson and De Vries 1997, Jackson, 
Maude and Perraudin 1997), with evaluating properties of VaR and other risk measures 
(Artzner, Delbaen, Eber and Heath 1998, Cvitanic and Karatzas 1998, Wang 1998), or with 
the evaluation VaR models from different perspectives (Hendricks 1996, Christoffersen 
1997, Lopez 1997, Engel and Gizycki 1999). Regulation and banking aspects of VaR 
literatures have been emphasized by Kupiec and O’Brien (1997), Schachter (1997) and 
also Galai (1999) in the proceedings of the International Conference on Risk Management 
and Regulation in Banking 1997. Comprehensive overviews of VaR philosophy, 
instruments and techniques can be found in P. Jorion (1997) Value at Risk: The New 
Benchmark for Controlling Market Risk, K. Dowd (1998) Beyond VaR: the New Science of 
Risk Management or C. Alexander (editor), J. Hull (1998-1999) Risk Management and 
Analysis. Ahn, Boudoukh, Richardson and Whitelaw 1998, Luciano 1998, Basak and 
Shapiro 1998 consider the economic agents’ wish to limit the VaR of their market exposure 
and optimal portfolio policies. A macro risk management tool has recently been developed 
by Blejer and Schumacher (1998), employing the same methodology as used in VaR 
models for individual financial institutions but focusing on the country’s balance sheet 
vulnerability as opposed to a regime’s sustainability. 

Our paper examines the empirical performance of several value at risk estimation 
techniques employed to model foreign exchange exposure from a banking regulation 
perspective. We compare the performances of each model through a simulation 
methodology for a random portfolio containing spot position in five currencies against ROL, 
daily adjusted over a sample period of 22 months. Performance assessment is based on a 
range of tests that address the relative size and variability of VaR estimates, accuracy 
features from a backtesting perspective and nevertheless efficiency in setting capital 
charges.   

We found support in our attempt to model VaR for measuring foreign exchange bank 
exposure in Hendricks (1996), Mahoney (1996), Lopez (1997), Danielsson and De Vries 
(1997 and 1998), Jackson, Maude and Perraudin (1997), Kupiec and O’Brien (1997), Butler 
and Schachter (1996 and 1997),  Klaasen (1998), Engel and Gizycki (1999) and Alexander 
(1997 and 2000). 

Since the introduction of the simplest VaR models, a little over ten years ago, the range of 
techniques used to obtain VaR estimates has expanded both in number and in complexity. 
The original VaR model uses classical multivariate statistics. Returns are assumed to 
follow a multivariate normal distribution, the paradigm until the late 1960s. Great advances 
have been made in multivariate statistics since then, and some of the developments in 
market risk models can be seen as stages in a catching-up process. 

An example is the use of nonparametric estimates of probability distributions. Rather than 
starting with an assumed distribution, characterized by a few parameters like mean and 
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variance, nonparametric estimates start with a sample of data and estimate a distribution 
from it. Since the distribution is based closely on the sample, a nonparametric model of 
returns may give more accurate estimates of market risk than a parametric one. A 
drawback of nonparametric methods is that they can fit the data too closely, so that noise 
as well as useful information is worked into the estimated distribution, but given the likely 
benefits of nonparametric methods, for example in estimating the tails of a distribution, the 
use of such methods in risk management will increase. 

To summarize, a wide range of approaches has been developed to calculate VaR. The 
variance-covariance and Monte Carlo approaches require explicit assumptions to be made 
about the statistical distribution underlying movements in market prices (the normal 
distribution being most commonly used), while the historical simulation and extreme value 
estimation methods make no such assumption. In this study, we will refer to the following 
VaR estimation techniques:  

• The variance-covariance technique assumes that the market returns have a joint-
normal distribution. The fixed-weight approach assumes that return covariances and 
variances are constant over the period of estimation; exponential smoothing moving 
average method takes into account the potential for the variance-covariance matrix to 
vary through time by placing more weight  on the most recent observations (JP Morgan 
and Reuters 1996);  

• GARCH models, first introduced by Engel (1982) and generalized by Bollerslev (1986), 
are designed to describe volatility as a time varying process in high frequency data. 
GARCH allow for both autoregressive and moving average behaviour in variances and 
covariances and capture the volatility clustering effects. Constant correlation GARCH 
and orthogonal GARCH techniques represent variants of GARCH used in modeling 
portfolio returns.  

• Kernel estimation uses non-parametric methods of weighting the historical data in 
estimating the variance-covariance matrix.  

• Historical simulation uses past movements in market prices to compute a hypothetical 
distribution of returns. 

• Antithetic historical simulation takes into account the trend behaviour of asset prices by 
augmenting the original data series with the negative of the profits and losses used in 
standard historical simulation 

• Exponential historical simulation exploits the non-parametric nature of historical 
simulation while imposing an exponential-weighting scheme on the historical data. 

• Monte Carlo simulation using normally distributed returns estimates the variance-
covariance matrix using a fixed-weight variance-covariance method and estimated 
returns are drawn random. 

• Extreme-value estimation focuses attention on estimation of a distribution’s tail.  
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‘It is too early to judge how successful the various methods nonlinear modeling will 
eventually be. The less constrained a method is by prior information, the greater its 
potential for matching complex market structures. Pure black-box methods like neural 
networks are extreme cases of this kind. There is a trend towards letting the data produce 
models rather than basing models on assumptions’ Trends in Risk Modeling, Chris Deas 
1998. Another trend is implied by the fact that larger amounts of data about the market are 
needed to derive the information provided otherwise by assumptions. Econometric studies 
also reveal aspects of market structure, which should be built into pricing and risk 
management models.  

But the use of VaR models in risk management systems should not be perceived as a 
global panacea. There are important shortcomings of different VaR approaches: 

• VaR estimates are based on historical data and to the extent that the past may not be a 
good predictor of the future, VaR measure may underpredict or overpredict risk; 

• VaR provides no indication of the magnitude of losses that may occur if adverse market 
movements are larger than predicted by the chosen confidence level. To address this 
problem, stress testing is developed together with VaR (specification of stress 
scenarios and assessment of their impact on portfolio value); 

• The potential for aggregating exposures in a wide array of industry and markets is both 
a strength and a weakness of VaR approach. The aggregating procedure may hide 
imbalances between exposures from different risk sources.  

The remainder of the paper is organized as follows: the first section presents the data and 
the simulation methodology, the second section describes the panel of models used in 
estimating VaR together with the estimation results, in section three is developed a model 
performance analysis and, finally, section four concludes.  

 

Section 1 Data and simulation methodology 

Our study employs 17th value at risk estimation approaches to model bank FX exposure: 
classical variance-covariance method (equally weighted moving average), five classes of 
exponentially weighted moving average models (with lambda coefficient values: 0.9, 0.92, 
0.94, 0.96, 0.98), three types of GARCH models - constant correlation GARCH (1,1), 
constant correlation GARCHFIT and orthogonal GARCH, three approaches of the historical 
simulation method: the classical one, the exponentially weighted historical simulation and 
antithetic historical simulation, structured Monte Carlo simulation, kernel estimation and 
three types of tail estimation (with the assumed cumulative probability percentage in the 
distribution’s tail: 5%, 10% and 15%). All the models mentioned above will be presented in 
the Section 2, together with the results obtained.        

The data consists of daily exchange rates (reference exchange rates communicated by the 
National Bank of Romania) against the ROL for the following five currencies: USD, AUS, 
FRF, DEM and GBP. The historical sample covers the period: June 18th, 1997 – April 6th 
2000.  
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The performances of all value at risk estimation models are determined over the sample 
period through a simulation methodology for a portfolio daily adjusted and containing spot 
position in five currencies. The portfolio is considered constant over the estimation period - 
24 hours. 

The performance analysis consists in several steps: 

a) Selection of the daily random portfolio over the sample period, by drawing the positions 
in each currency from a normal independent distribution with the following 
configuration: USD, DEM and FRF daily positions ~ 50000*N(1,0.65), GBP positions 
~30000*N(1,0.65) and AUS positions ~100000*N(1,0.65). Even if it may appear to be 
unrealistic that bank FX portfolios are driven by a random process, we find support for 
our approach in Hendricks (1996) and Mahoney (1996) in the sense that VaR 
measures are scale independent.     

b) Estimation of the daily value at risk for the portfolio selected in the first step, using each 
of the 17th approaches for each observation in the sample period starting with June 18th 
1998. For each estimation, we use a rolling window containing the 259 observations 
that precede the date for which the estimation is made.  

c) Calculation (ex post) of daily outcomes from the portfolio, over the estimation sample 
period, as benchmark in backtesting procedures.  

d) Assessing the performance of each value at risk approach, by comparing the 
estimations obtained in step two from different approaches with the daily portfolio 
outcomes through statistical and operational instruments.   

Statistical features of the financial series of exchange rates against ROL (first 
difference in logs): 

1. Tests for normality assumption: all five series provide evidence of non-normality with 
excess kurtosis (higher probabilities for extreme events than indicated in the normal 
distribution – fat tails) and positive skweness, therefor, more than 50% probability of 
exchange rate depreciation. The empiric quantiles graph (Graph 1.1) indicates, for each 
serie, deviations below the normal line for smaller quantiles and over the normal line for 
higher quantiles. The normality null hypothesis is strongly rejected by Jarque-Berra 
normality test. The statistic features of the exchange rate series are as follows: 

 
 LAUS LDMK LFRF LGBP LUSD 

 Mean  0.001149  0.001148  0.001155  0.001324  0.001359 
 Median  0.000750  0.000734  0.000736  0.000734  0.000818 
 Maximum  0.068813  0.068822  0.068907  0.062027  0.059451 
 Minimum -0.027352 -0.027692 -0.027871 -0.030756 -0.024543 
 Std. Dev.  0.007591  0.007580  0.007628  0.006746  0.004673 
 Skewness  1.120261  1.144260  1.072458  0.978115  2.578952 
 Kurtosis  12.20665  12.32719  12.19776  13.20850  40.30094 
 Jarque-Bera  2734.621  2809.290  2716.866  3290.730  43188.81 
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000 
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2. Homoscedasticity assumption: a simple visual inspection of the series indicates a  
volatility clustering process (volatility mean reverts), the alternance between high and 
low volatility periods and even more, a possible correlation between the variance 
processes for the five series, which justifies a multivariate approach for the portfolio 
value at risk modelling. The returns (first difference in logs)of all the exchange rates 
employed are plotted in Graphs 1.2 to 1.6. Periods of high and low volatility are marked 
distinctively on the graphs.  
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Graph 1.1: empiric quantiles for exchange rates returns 
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3. Stationarity assumption: the unit root null hypothesis for the first difference in logs 
time series of exchange rates is rejected by ADF unit root test for the 1% critical level, 

USD/ROL returns

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 29 57 85 113 141 169 197 225 253 281 309 337 365 393 421 449 477 505 533 561 589 617 645 673 701 729

days

lo
g 

FX
 ra

te
 c

ha
ng

e

LUSD

Graph 1.6 
as follows: 

ADF TEST STATISTIC (level, 2 lagged differences) on LAUS 
 
ADF Test Statistic -16.29343 1%   Critical Value* -3.4419 

  5%   Critical Value -2.8659 
  10% Critical Value -2.5691 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
 
ADF TEST STATISTIC (level, 2 lagged differences) on LDEM 
 
ADF Test Statistic -16.33812 1%   Critical Value* -3.4419 

  5%   Critical Value -2.8659 
  10% Critical Value -2.5691 

*MacKinnon critical values for rejection of hypothesis of a unit root. 

ADF TEST STATISTIC (level, 2 lagged differences) on LFRF 
 
ADF Test Statistic -16.23796 1%   Critical Value* -3.4419 

  5%   Critical Value -2.8659 
  10% Critical Value -2.5691 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
 
ADF TEST STATISTIC (level, 2 lagged differences) on LGBP 
 
ADF Test Statistic -16.63797 1%   Critical Value* -3.4419 

  5%   Critical Value -2.8659 
  10% Critical Value -2.5691 

*MacKinnon critical values for rejection of hypothesis of a unit root. 
 
ADF TEST STATISTIC (level, 2 lagged differences) on LUSD 
 
ADF Test Statistic -13.91237 1%   Critical Value* -3.4419 

  5%   Critical Value -2.8659 
  10% Critical Value -2.5691 
*MacKinnon critical values for rejection of hypothesis of a unit root. 
9 
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4. Serial independence assumption: the autocorrelation coefficients for 36 lags lie 
between –0.1 and 0.1, with one major exception: the autocorrelation coefficient of the 
LUSD serie for the first lag is 0.321. The autocorrelation coefficients are presented in 
Graph 1.7. The hypothesis of a common process for at least three of the exchange 
rates,  AUS, FRF and DEM is confirmed also by the structure of the autocorrelation 
coefficients.  

 

 

 

 

 

 

 

For confirming the low evidence of autocorrelation, we also use Box-Liung Q statistic. For 
the LAUS, LFRF and LDEM, no autocorrelation coefficient is significantly different form 
zero at the 5% confidence level. For LGBP and LUSD series, all the coefficients are 
statistically significant, till the 34th lag for LGB and till the 36th lag for LUSD.     

Autocorrelation analysis must be extended also to the squared log changes in the 
exchange rate series, in the aim of identifying a possible ARCH process. The serial 
autocorrelation coefficients for the squared log changes are statistically significant for the 
first 30 lags at the 5% confidence level, and, at least for the first lag, are over 0.1 (Graph 
1.8). Based on the strong positive autocorrelation for the first lags, combined with excess 
kurtosis, we may conclude that there are indications for a conditional variance process for 
the log changes in the series of exchange rates. This finding is rather a common result for 
high frequency exchange rates data.  

 

 

 

 

 

 

 

Graph 1.7: Autocorrelation coefficients
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Graph 1.8: Autocorrelation coefficients for squared returns
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Section 2 Value at risk estimation models and results 

In this section we will discuss the methods used to estimate value at risk, together with the 
estimation results. Each model estimation was implemented in Eviews 3.1 through the 
programes presented in Appendix 3.   

Variance-covariance (or moving average) models presume a normal distribution for 
market returns and serial independence. All moving average models estimate the 
unconditional variance of the returns time series based on the restrictive assumption of 
constant volatility. In fact, moving average models are not forecasting but estimation 
models: the current volatility estimation is also the volatility forecast, whatever the time 
horizon. The normality assumption simplifies the estimation procedure by allowing all 
percentiles to be known multiples of standard deviation, and by reducing the number of 
distribution parameters to be evaluated to only two: mean and standard deviation. The 
serial independence implies that returns from two different moments are not correlated and, 
then, the rule of square root of time rule can be applied.  

Define Rt  to be the return matrix at moment t, and tΣ the variance-covariance matrix of Rt. 
The return on a portfolio containing spot FX positions can be expressed as a linear 
combination of the returns on individual positions. Portfolio sensitivity to movements in a 
specific risk factor is defined as the change in portfolio value following a change of 1% in 
the risk factor. The sensitivities vector (with a number of elements equal to the number of 
risk factors) is denoted by δ. 

For ),0(~ δδΣ∆ NP , δδα Σ−= ')(ZVaR , where )()( 1 αα −= NZ  

Once a distribution of possible profits and losses has been specified, standard properties of 
normal distribution are used to determine the loss that will not be exceeded (1-alfa) percent 
of the time, i.e. value at risk. The model calibration consists in estimating the parameters of 
the variance-covariance matrix, which can be done by several methods.  

The equally weighted moving average method calculates a given portfolio variance 
using a fixed amount of historical data. Each element from the variance-covariance 
portfolio matrix is estimated as follows: the variance for each risk factor is computed as an 
equally weighted average of squared returns and the covariance between each two risk 
factors is evaluated as an equally weighted average of cross products of returns. 

∑
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=
−−+ =Σ
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0
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The main drawback on the equally weighted moving average method is represented by the 
fact that stress events cause ‘ghost features in volatility’ (Alexander 1998).  An extreme 
event will keep volatility estimates high for a period equal to the time length of historical 
date used in estimation, although the underlying volatility has long ago returned to normal 
levels. Equally weighted moving average method does account for the phenomenon of 
‘pressure relieving’ implied by an extreme event. The VaR estimates obtained are plotted in 
Graph 2.1.   
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Exponentially weighted moving average method places more weight on more recent 
observations and this procedure eliminates the ghost features in volatility. Because the 
weights decline exponentially, the most recent observations receive more weight than the 
earlier ones. The exponentially weight is done by using a smoothing constant, lambda, as a 
decay factor which determines the rate at which the weights on past observations decay as 
they move further into the past. The larger the value of the decay factor, the more weight is 
placed on past observation and the smoother the series becomes.    

For the log returns is hypothesized the following random walk model: 
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The variance-covariance matrix is given by: 
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This can be rewritten as  

tttt RcR '*ˆˆ
1* +∑=∑ λ  

which implies a first order autoregressive structure for the variance/covariance matrix that 
is a form of IGARCH model without constant term. In this expression, )1( λ−  represents 

the volatility speed of reaction to market events, and the coefficient of lagged variance, λ , 
determines the persistence in volatility. 

Exponentially weighted moving average is a quick and easy method that captures the 
volatility clustering. Current estimates respond quickly to changing market conditions, but 
the volatility and correlation forecast are still constant.  

VaR estimate using Equally Weighted Moving Average Method
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Another problem with exponentially weighted moving average method is that there is no 
optimal way to choose the smoothing parameter. JP Morgan recommend for lambda a 
value of 0.94, while usually a smaller persistence is obtained from empirical estimations. In 
order to diminish the problem related to choosing one or another value for the parameter 
lambda, this study applies the exponentially weighted moving average method with 5 
different values for lambda: 0.9, 0.92, 0.94, 0.96 and 0.98. The estimation results for three 
values of the underlying parameter lambda are presented in Graph 2.2. 

 

 

 

 

 

 

 

 

Historical simulation is the simplest non-parametric method of value at risk estimation, 
strongly advocated by Hendricks (1996); it makes no assumptions about the properties of 
the empirical returns distribution. Historical simulation uses past movements in the risk 
factors to compute a hypothetical distribution of daily returns on the current portfolio.  

The distribution of profits and losses is constructed by subjecting the current portfolio 
structure to actual changes in market factors experienced in the last T observations. T sets 
of hypothetical values for each risk factor are constructed using their current values and the 
changes experienced in the last T days. Using these hypothetical risk factor values, T 
hypothetical portfolio outcomes are computed and the distribution of profits and losses 
determined.  

The value at risk for the current portfolio is set equal to the percentile of the hypothetical 
P&L distribution associated with the required level of confidence. For 99% coverage 
estimation over a rolling window of 259 past observations, value at risk is set equal to the 
3rd largest loss observed in the hypothetical outcome distribution. The estimation results 
are plotted in Graph 2.3. 

The main shortcoming on this method is the fact that extreme percentiles are difficult to 
estimate accurately without employig a large sample of data. But a large sample of data is 
not consistent with non-stationarity and induces the problem of ghost features in volatility, 
because all past observations receive an equal weight. 

 

VaR estimate using Exponentially Weighted Moving Average Methods 
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Another issue related to historical simulation is the trending behaviour often exhibited by 
financial series. If the data sample is not large enough, the possible outcomes generate by 
a trend change are not taken into account. Adressing this problem, Holton (1998) suggests 
as for imposing symmetry to the distribution to double the sample size by taking for each 
observed outcome it’s negative value and augmenting the original sample. This approach 
is known as antithetic historical simulation. The value at risk estimation results from this 
approach are presented in Graph 2.4.    

 

  

 

 

 

 

 

 

Boudoukh (1998) proposes another hybrid approach that eliminates the distortion caused 
by the sample size and non-stationarity in the return distribution, exponential historical 
simulation. This approach imposes a weighting scheme on data, whilst exploiting the 
benefits from the non-parametric nature of historical simulation.    

)1(
)1(1

1 T

k

ktw
λ

λλ
−

−=
−

+−  

VaR estimate using Historical Simulation Method
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VaR estimate using Antithetic Historical Simulation Method
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Each observation from the past is associated with a weight according to its distance from 
the current observation. The returns are then ascendingly ordonated. The weights 
associated to each observation provide the probability density function of the hypothetical 
outcome distribution. Value at risk for a given confidence level is set equal to the first 
realization in the distribution for which the cumulative distribution function (i.e. the sum of 
all preceding ordonated realization weights) reaches the given confidence level. For the 
parameter lambda, we used a value of 0.97. The results are plotted in Graph 2.5.  

 

 

 

 

 

 

 

 

GARCH models  

As we documented in the first section of this paper, exchange rate volatility is a time 
varying process in high frequency data and periods of high volatility tend to cluster. To 
capture this, many authors employed ARCH models, first introduced by Engel (1982) and 
generalized by Bollerslev (1986). GARCH allow for both autoregressive and moving 
average behaviour in variances and covariances and capture the volatility clustering 
effects.  

The GARCH regression model contains two equations: one for the expected returns 
(assumed to be very simple) and another for the returns variance. In the GARCH (p,q) 
model proposed by Bollerslev (1986), the conditional variance takes the form of: 
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The parameters are estimated by constrained maximum likelihood. In the simples 
GARCH(1,1), vanilla GARCH, the parameter α   determines the volatility speed of reaction 
to market events, while β determines the volatility persistence in estimates.  GARCH 
volatility forecasts converge to the unconditional variance ))(1/( γαω +−  only if 1<+ βα . 
On financial markets, the speed of reaction is usually documented to be below 0.25 and the 
volatility persistence over 0.7. The constant term in the variance equation indicates the 
expected level of convergence for long term GARCH forecast.  

VaR estimate using Exponentially Weighted Historical Simulation 
Method
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The next step in estimating a GARCH model is the specification of the mean equation, 
which is usually a random walk model, ARMA(2,1) for daily observations, or AR(2).  

The advantages of GARCH models consist in providing a convergent volatility term 
structure and in estimation of optimal parameter. The main limitations regard estimation 
problem and difficulties in achieving the convergence for multivariate models. In order to 
eliminate such drawbacks, several methods have been proposed: constant correlation 
univariate modeling, risk factor orthogonalization, Integrated-GARCH, Exponential-
GARCH, Asymmetric-GARCH. 

A common approach to estimate a portfolio variance is the constant correlation GARCH 
model proposed by Bollerslev (1990). This model estimates each diagonal element of the 
variance-covariance matrix using a univariate GARCH model. The constant correlation 
assumption allows the off-diagonal elements to be computed from the variances under the 
assumption that the risk factor correlation in time is invariant. The off-diagonal elements are 
estimated as follows: 

1,1,
2

1,ˆ +++ = tjtiijtij σσρσ   

In modeling the variance process followed by the exchange rates against ROL we found to 
be the appropiate speciffication an AR(1) process for the mean equation of GBP and USD, 
and a constant equation for the other three currencies mean equations. In all mean 
equation it appeard to be statistically significant a dummy variable for the observation 454, 
when ROL suffered a drastic depreciation of 6% against USD.  

For the variance equation, based on previous insights, we tried to estimate first a vanilla 
GARCH, which proved not to be satisfactory for all the exchange rates. It appears, as 
suggested in the first section of this paper by the pattern in the ACF of the squared log 
changes, that two slightly different processes derive the exchange rates: the first for AUS, 
FRF and DEM, and the second for GBP and USD.  For AUS, FRF and DEM the 
appropriate specification is ARCH(1), while for GBP and USD, the process seems to be a 
GARCH(2,1).  Let this second approach, which uses different specification forms in 
variance equation, be denoted as GARCHFIT.  

For standard errors estimation we used the heteroscedsticity consistent estimator proposed 
by Bollerslev and Woodridge (1989), that minimizes the problem of innovations non-
normality. The GARCH parameter estimation algorithm used is Marquandt with initial 
coefficient values estimated with OLS/TLS. The results are presented in the Appendix 2. 

For the first three currencies in the portfolio (AUS, DEM and FRF), the variance process 
exhibits low persistence in volatility estimates together with very unstable coefficient 
estimates obtained from the rolling window of 259 historical observation. The coefficient 
instability may partially be due to the weak specification of the variance equation.     

The variance equations for GBP and USD, better specified, indicate high persistence in 
volatility estimates. Such high persistence is usually explained either by the frequency of 
financial data observations, or by a regime switching volatility process. Lamoureux si 
Lastrapes (1990) show that structural changes in the variance process can induce 
overestimation of persistence in GARCH models, by changing the level of unconditional 
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variance. For example, if variance is low and constant over a period of time, and high but 
constant another period of time, such persistence of high and low homoscedastic volatility 
periods cannot be discriminated in a clasical GARCH model from a individual event 
volatility persistence.  

Structural changes in the variance process are usually originated in changes of economic 
policy or institutional reforms, therefor regime switching volatility models are appealing 
instruments to be used in transition countries, where economic and institutional challenges 
are likely to have an impact over the structural behaviour of the markets.  

One approach in modelling a regime switching volatility is the use of dummy variables to 
identify the deterministic changes in the variance process and to separate periods with 
different volatility regimes. If the dummy variables are found to be significant, the 
persistence in volatility estimates is expected to be reduced. A usefull diagnosis tool to 
identify the presence of a regime switching volatility is the GARCH parameter estimates 
instability.  The graphs of the parameters estimates for all GARCH models are presented in 
the Appendix. 

The solution chosen to reduce the persistence in volatility estimates for USD/ROL 
exchange rate (first difference in logs) and to allow forecast convergence, consists in 
introducing two dummy variables in the variance equation in order to separate between two 
different volatility regimes. The first dummy variable, DUMMY1 points out the transition 
from a low volatility period to a high volatility period caused by the Russian crises –August 
1998- that determined massive foreign capital withdrawals from emerging economies 
markets and implicitly affected the liquidity of the FX markets. The second dummy variable, 
DUMMY2 marks the beginning of a new tranquil period in the FX market – June 1999 – 
initiated by the success of the National Bank of Romania in avoiding a potential default in 
the service of the foreign debt and another stand-by agreement with the IMF. DUMMY1 is 
also used to replace the point variable DUMMY in the mean equation. 

For the first model estimated, vanilla GARCH, both dummy variables are statistically 
significant and the associated coefficients have the expected sign: DUMMY1 is positively 
related to the level of variance, while DUMMY2 is negatively related to the variance. The 
persistence of volatility estimates is reduced below unit, allowing the model forecast to 
converge to the steady state unconditional variance. The GARCH(1,1) estimation results 
are plotted in Graph 2.6. 
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In GARCH(2,1) model, the coefficients of the two dummy variables are no longer 
statistically different form zero, at a confidence level of 10%, but they still manage to 
reduce the persistence of volatility estimates below unit. The GARCHFIT estimation results 
are plotted in Graph 2.7. 

 

 

 

 

 

 

 

Another approach to model portfolio variance using univariate GARCH estimation- 
orthogonal GARCH - was first introduced by Engle, Ng and Rotschild (1990) and further 
developed by Alexander and Chibumba (1998). This approach uses the principal 
component analysis for the risk factor orthogonalization. The variance-covariance matrix of 
the innitial risk factors is obtained from the variances of the orthogonalized factors.  

The first step in estimating VaR with orthogonal GARCH consists in determining the 
principal components and risk factor orthogonalization. Because the principal components 
are orthogonalised, the covariances modelling is no longer neccesary and the number of   
parameters to be estimated is substantially reduced. The orthogonalization procedure 
allows the properties of the whole innitial variance-covariance matrix to be deduced from a 
univariate volatility estimation. 

Let R denote the observed return matrix (T*k). W refers to the eigenvectors matrix of R’R. 
the ortogonal principal components are P1, P2, P k , with  

[P1 P2 …P k]=RW    

A change in the risk factor I can be written as a linear combination of the principal 
components, the weight being given by the I-th eigenvector. 

R=PW’ => Ri =wi1P1+ wi2P2 +…+wikPk   

The variance-covariance matrix is then given by: 

')var(ˆ WPWt =∑  

For modeling the variances of the principal components, we used an univariate constant-
correlation GARCH(1,1) specification. The problems associated with the estimation of 

VaR estimate using GARCHFIT
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constant correlation GARCH, high persistence, different specification forms among 
currencies, and parameter instability are not also the case for the orthogonalized factors. 
The persistence is low, the model is better specified and ensures the same mean and 
variance equation form for all the currencies and, most important, the estimates for the 
parameters are stable over time. The estimation results are presented in Graph 2.8.   

 

 

 

 

 

 

 

 

 

Structured Monte Carlo simulation 

For generating a sequence of random variables with zero mean and a variance-covariance 
matrix that replicates the observed matrix at a certain moment, a specific form of Monte 
Carlo simulation is used. The structured Monte Carlo simmulation provides a set of 
possible scenarios for the value of the portfolio. 

The first step in the structured Monte Carlo simulation implies a Cholesky decomposition of 
a given variance-covariance matrix.  

'AAT =∑ ,  A and A’ are triangular matrix 

The neat step consistes in generating a n*1 vector, denoted by Z, of random independent 
variables drawn from the standard distribution. Let Y=AZ, where Y elements have unit 
variance and are correlated according to the given variance-covariance matrix. 

This method provides individual random elements of the possible profits and losses vector 
that are consistent with the given correlation between the market factors. The simulation is 
repeated thousands of times in order to generate a representative distribution of possible 
outcome.  

The hypothetical profits and losses are sorted ascendingly, and the value at risk is set 
equal to the percentile of the distribution associated with the given confidence level. The 
estimation results are presented in Graph 2.9. 

VaR estimate using Orthogonal GARCH
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Gaussian Kernel density estimation model represents a combination of historical 
simulation and normal kernel estimation provided by Butler and Schachter (1996) aiming to 
improve the precision of VaR non-parametric estimate based on historical observations. 
The density of the return on a portfolio is estimated using a non-parametric method called 
Gaussian kernel, which can be seen as a simple generalization of a histogram obtained by 
smoothing the data with a normal continuous shape.   

Gaussian kernel estimation is obtained form an estimated portfolio return distribution that is 
continuous and differentiable. Thus, the kernel density estimation produces a non-
parametric estimate of the continuous probability distribution function of portfolio returns.  

The Gaussian kernel density function, )(ˆ xf , attaches a normal pdf to each data point. It’s 
important to mention that the use of a normal kernel estimation does not imply 
parametrization of final estimate, smoothing could be done with any continuous shape. The 
smoothing is done by centering each pdf on the data point with a bandwidth (st dev 
suggested by Silverman 1986) equal to 2.09.0 −nσ , where σ is the standard deviation of the 
data estimated from the available observations. 

The Gaussian kernel estimate of the probability density function of the portfolio returns is 
given by:    
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The kernel density estimation method is based on the hypothetical profits and losses 
discrete distribution constructed in the historical simulation. Another ascendingly sorted 
larger (1000 observations) data series is generated in order to represent the basis of 
estimation for the pdf. The bandwidth is computed as sugested by Silverman: 0.9*259^(-
0.2). For each data point in the newly generated series, the pdf is computed as the average 
of pdf estimates for the normal function parameters: mean=each observation from the 
hypothetical profits and losses discrete distribution and standard deviation=bandwidth.  

VaR estimate using structured Monte Carlo simulation
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The cumulative distribution function for each data point is obtained by summing all discrete 
pdf values  that preced the current observation. The value at risk estimate is set equal to 
the percentile of the cdf associated with the given confidence level. The estimation results 
are shown in Graph 2.10. 

 

 

 

 

 

 

 

 

Extreme return (tail) estimation 

Vaue at risk analysis highly depends on the accuracy of extreme returns estimation. As a 
basic rule, the properties of the tail return distribution are significantly different from those 
of the process generating them. Fat tails phenomenon is frequently identified in financial 
time series analysis.  

Extreme value technique focuses attention on the estimation of the distribution’s tails. 
These techniques use the larges or the smalles realizations of the data series to estimate 
the tail index, which is a measure of the tail thickness. The estimation method is semi-
parametric, combining non-parametric historical simulation with parametric estimation of 
distribution’s tails. 

The simplicity of extreme value estimation derives from the fact that extreme value 
distribution belongs to one of just three possible distribution famillies, regardless the 
original return distribution. Particularly for financial series, if the distribution is fat tailed, the 
familly to which belongs is: 

f(x)=exp(-xl), if x>=0 and zero otherwise. 

The only parameter that needs to be estimated is the tail index. The first step in estimating 
the tail index implies sorting ascendingly the hypothetical profits and losses distribution 
constructed as in the historical distribution. The maximum likelihood estimator of the tail 

index  (Hill 1976) is given by: ∑
−

=−
=
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Mγ  where M the distribution rank 

at which the tail starts.  

VaR estimate using Gaussian kernel density estimation
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In our analysis we employed three values for the tail cumulative distribution function: 5%, 
10% and 15%. The estimation results are shown in Graphs 2.11 to 2.13. 

For M and Υ known, the extreme quantile estimate is given by: γ
1

1 )(ˆ
Tp
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VaR estimate using Extreme Value Method (M=5%)
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VaR estimate using Extreme Value Method (M=10%)
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VaR estimate using Extreme Value Method (M=15%)
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Two of 731 simulated portfolios are defined by small net positions generated from a 
compensation between large long and short positions. For these two portolios, value at risk 
estimates are quite large, some models identifying possible losses larger than the net 
portfolio investment. The VaR estimates for these two moments are presented in Graph 
2.14 and 2.15.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 3  Estimation performance analysis 

Although the supervision authority does not indicate a specific approach to be used in VaR 
estimation, the penalties associated with internal model failures in accurately forecasting 
the distribution of future losses raise the issue of model selection and performance criteria. 

Performance assessment is based in our study on a range of tests that address the relative 
size and variability of VaR estimates, accuracy features from a backtesting perspective and 
nevertheless efficiency in setting capital charges. Being aware that the tests employed are 
not relevant enough to allow a categorical discrimination between models, they do provide 
useful diagnostic information for evaluating model performances. The results for each 
performance criterion are presented in Appendix 1. 
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VaR estimate on 25th November 1999 
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1. Mean relative bias: measures the relative size and average conservatism of different 
VaR estimation approaches (Hendricks 1996). This performance criterion points out the 
extent to which different VaR techniques produce risk estimates of similar average size. 
Based on the average size of different VaR estimates, it allows further assessments 
about the degree of conservatism of individual techniques.  

Given N models and T value at risk estimates from each model, mean relative bias of I 
model is expressed as the average of daily differences, in percentage terms, between the 
estimates produced by model I and the average of all models estimates:   

∑
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−=
T

t t

tit
i VaR

VaRVaR
T

MRB
1

1
   

Given the MRB numbers for all models, it appears to be quite a large dispersion between 
estimates provided by different VaR approaches. The spread is mostly induced by three 
models: kernel estimation, tail estimation 15% and exponentially weighted historical 
simulation. Without these three notable exceptions, all other model’s MRB tend to lay 
between –0.2/+0.07. The MRB values are plotted in Graph 3.1. 

As suggested by MRB, the model that produces the most conservative estimates of value 
at risk is Gaussian kernel estimation, its risk estimates being, on average, with 70% higher 
than all models average. The next most conservative model is tail estimation with M=15%, 
which overestimates the average of all models with 23 %. Models that provide estimates 
constantly below the average of all models are exponentially weighted historical simulation 
(-25%) and exponentially weighted moving average models. Models that produce the 
estimates closest to the average level are tail estimation for M=5 and 15%, orthogonal 
GARCH(1,1), EWMA (lambda=0.98), historical simulation and structured Monte Carlo 
simulation.  

 

 

 

 

 

 

 

 Evaluating the performances of different underlying parameters indicates, in the case of 
exponentially weighted moving averages, that the degree of estimates conservatism is 
positivelyy related to lambda coefficient, which is also true for M coefficient in tail estimation 
procedures. Analysing tail estimation MRB numbers, it appears to be quite a large spread 
yielded by M values: if tail estimation 5% replicates almost perfectly the average of all 
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models risk measures, tail estimation 15% overstates the same average with more than 
20%. If the distance of the estimate from the average would be a parameter selection 
criteria, the most accurate estimates are given by lambda=0.98 and M=5 or 10%.   

Considering the evidences of non-normality presented in the first section, we would expect 
models heavily based on the normality assumption to underpredict the estimation provided 
by other models. This is the case for the models like equally and exponentially weighted 
moving averages, GARCH models that tend to underestimate the average of all model 
estimates more than models like tail estimation or kernel estimation. The exception is 
provided by the simulation approaches: exponentially weighted historical and structured 
Monte Carlo. The first produces estimates below the average while the second, which 
relies heavily on normality assumptions, seems to be more conservative.  

 

2. Root mean square relative bias examines the degree to which the risk measures tend 
to vary around the average risk measure for a given observation. This statistic acts like 
a standard deviation measure. 

RMSRB emphasises the fact that for any given moment, dispersion between the risk 
estimates produced by different models is likely to occur.  

Root mean square relative bias is computes as: 
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RMSRB statistic captures two different effects: the extent to which a given model estimate 
systematically differs from all models average and the intrinsic variability of the model 
estimate. The RMSRB numbers are shown in Graph 3.2. 

 

 

 

 

 

 

 

For the majority of the models, RMSRB tends to lay between 0.2 and 0.3. Models that 
provide the least variable estimates are simple and antithetic historical simulation, 
structured Monte Carlo simulation and EWMA(0.98). All exponentially weighted moving 
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averages produce less variable estimates. The highest variability is associated with kernel 
estimation technique, followed by tail estimation (M=5%) and equally weighted moving 
average. From the parameter selection perspective lowest variability is exhibited by EWMA 
with lambda=0.98 and tail estimation with M=10%.   

By comparing the two statistics, MRB and RMSRB, we can explain the highest values of 
RMSRB exhibited by kernel estimation and tail estimation 15% by their high degree of 
conservatism. This in not the case for equally weighted moving average and tail estimation 
5%, models that precisely replicate the average of all models estimate, thus their variance 
cannot be attributed to a systematically difference from the all model average. In order to 
separate the two effects mentioned, it is necessary to compute another measure of model 
estimate variance, which is called variability.  

 

3. Variability assumes a zero mean for all models average, but it has the disadvantage of 
not being scale independent.     

Variability is computed as: 
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Even if variability is no longer scale independent, we can assess that the largest degree of 
variability is still associated with kernel estimation results. Also over the average variability 
is produced by constant correlation GARCH models. The lowest estimate variability is 
generated by the historical simulation technique. Variability results are plotted in Graph 3.3.    

4. Binary loss function: as measure of accuracy (conservatism at the right time) counts 
the number of model estimate failures (moments when the risk measure estimate is 
lower than the actual loss on the portfolio). Binary loss functions are the instrument 
used by the supervision authorities in backtesting procedures aiming to assess the 
quality of internal models. In a binary loss function, all the exceptions, regardless their 
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dimension, receive equal weights - 1, while the moments when the actual losses are 
smaller than the risk estimates, the weight is 0.   

LI,t+1= 1 f LI,t+1<VaRI,t 

0 if LI,t+1>=VaRI,t 

Based on backtesting results over a given period (usually 1-year), the models are 
classified in three categories: the green zone (maximum number of exceptions/year 4), 
the yellow zone (maximum number of exceptions/year 9) and the red zone (more than 
10 exceptions/year). The multiplication factor, as basis in calculating capital charges, is 
to be set within a range of three to four, depending upon the supervisor’s assessment 
of the bank’s risk management practices.  

 

 

 

 

 

 

 

 

Given the total number of exceptions recorded in two years, the majority of the models are 
classified in the green zone: equally and exponentially weighted moving averages, constant 
correlation and orthogonal GARCH models, structured Monte Carlo simulation, antithetic 
historical simulation, kernel and tail estimation. EWMA, orthogonal GARCH and kernel 
estimation models have generated an exceptionally low number of estimation failures (less 
than 1 failure per year). The results of backtesting are shown in Graph 3.4. 

Only two models are allotted to the yellow zone, both based on historical simulation: simple 
and exponentially weighted.  

None of the models falls into the red penalising zone. 

 

Binary loss functions also allow assessing if a given model attains the confidence level for 
which it was designed. If one model provides the desired coverage, in our case 99%, the 
failure percentage should be below 1%. The confidence level attained indicator is plotted in 
Graph 3.5. 
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The models that provide the assumed confidence level are the equally and exponentially 
weighted moving average, orthogonal GARCH, structured Monte Carlo, kernel estimation 
and tail estimation for M=15%. The antithetic historical simulation is also very close to 1% 
failure percentage. 

As a measure of accuracy, the confidence level attained indicates as conservative the 
techniques based on moving averages, tail estimation 15%, structured Monte Carlo and 
kernel estimation. Models with lower performances are based on historical simulation 
approaches. Nevertheless, all models are consistent and acceptably adequate from a 
backtesting regulatory perspective.  

 

5. Quadratic loss function accounts, besides the number of model’s exceptions, also 
their magnitude, being a better instrument in judging the accuracy degree of an 
estimate then the binary loss function. Moreover, large failures are penalised also by 
the quadratic form of the loss function. The quadratic loss function is defined as:    

LI,t+1=  1+( LI,t+1 -VaRI,t)2 if LI,t+1<VaRI,t 

0 if LI,t+1>=VaRI,t 
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QUADRATIC LOSS FUNCTION

4.18
3.05

2.02
1.01 1.00 1.03

6.82 6.76

1.05

12.49

5.12
6.13

10.91

2.36

10.47 10.18

6.34

0.00

13.00

VC

EWMA9
0

EWMA9
2

EWMA9
4

EWMA9
6

EWMA9
8

CCG11

CCGFIT

OGAR
CH HS

MCS
AH

S
EWHS KE

TE
 5%

TE
 10

%

TE
 15

%

Graph 3.6 



VaR models – an approach to measuring bank FX exposure 

Section 3  29 

The quadratic loss function values for all the models are plotted in Graph 3.6.    

Quadratic loss function brings additional information in the aim of discriminating between 
models that provide the same coverage level. From the models that provide the expected 
coverage level, the most accurate estimations are produced by the exponentially weighted 
moving average with lambda parameter equal to 0.96, followed by EWMA 0.94 and 0.98 
and orthogonal GARCH. The exceptions magnitude penalises most the risk measures 
given by tail estimation 15% followed by structured Monte Carlo simulation.  

Regarding the models that don’t provide the desired confidence level, discrimination 
between historical simulation approaches: simple and exponentially weighted is allowed by 
the quadratic loss function results. Exponentially weighted method is less penalised by the 
magnitude of failures than the simple approach. As a parameter selection criterion, 
quadratic loss function indicates as more appropriate the percentage of 10 in tail estimation 
rather then 5, ranking suggested also by RMSRB statistic.   

 

6. Multiple needed to attain desired coverage: in order to enforce the comparison 
between the uncovered loss magnitude induced by various models, a useful tool is the 
multiple needed to attain coverage, which measures the dimension of adjustments 
necessary to each model in order to attain the full coverage at the desired confidence 
level. For each model is computed ex-post the multiple needed to attain desired 
coverage – 99%, XI as follows:   

FI=TI(1-alfa)   where  FI= sum   1 if LI,t+1<XIVaRI,t 

0 if LI,t+1>=XIVaRI,t 

The adjustments necessary for models that are not consistent with the assumed 
confidence level suggest multiples very close to unit. The largest multiple is required by the 
historical simulation approaches, leading to a possible indication of inadequacy of the 
historical return distribution with the current one. The multiples are shown in Graph 3.7. 
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Considering again the normality assumptions, it appears to be relevant a comparison 
between the coefficients indicated by the normal distribution for the transition from a given 
confidence level to another one, and the coefficients needed by the empirical distribution to 
realise the same transition. The multiplier needed by historical simulation approaches is 
larger than the coefficient indicated by the normal distribution. For example, the transition 
form a 98.34 to 99% coverage in the case of antithetic historical simulation estimates 
requires a multiplier of 1.013 under normality assumptions, while the actual coefficient 
necessary equals 1.077. However, the situation is not the same for GARCH models and tail 
estimation techniques, where the actual transition coefficients are smaller than indicated by 
the normal distribution.  

 

7. Mean relative scaled bias: after scaling all models to ensure a full 99% coverage 
percentage, it might be relevant to revert to the mean relative bias analysis. The results 
are presented in Graph 3.8. 

 

 

 

 

 

 

 

The initial ranking is still valid, after scaling the estimates with the multiples associated. The 
estimates closest to all model average are produced by structured Monte Carlo simulation, 
tail estimation 5 and 10%, orthogonal GARCH and equally weighted moving average 
models. Scaling also allows the reduction of initial spread induced by different values for 
the underlying parameter in tail estimation technique.  

A finding of considerable practical significance, in fact the idea behind MRSB, is to identify 
the model that, while still offering full 99% coverage, produces the lowest average value at 
risk estimates. From this point of view, the recommended models are constant correlation 
GARCH, exponentially weighted moving average and exponentially weighted historical 
simulation. 

8. Average VaR to uncovered loss ratio: measures the average size of the loss not 
covered by the risk estimation. 
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A given VaR number does not provide information about the magnitude of possible losses 
that occur within the given confidence level, in our case 1%. Nevertheless, this information 
is essential in risk management. The size of extreme losses represent an useful instrument 
in assessing whether VaR estimates are able to capture the excess kurtosis of the 
empirical return distribution. That is, the larger the average VaR to uncovered loss ratio, the 
more satisfactory the VaR estimate is. The estimated ratios are reported in Graph 3.9. 

 

 

 

 

 

 

 

The most accurate estimations of uncovered losses are provided by exponentially weighted 
moving average models, starting from lambda=0.96, for which average VaR estimates 
cover 97% of the loss. Loss coverage larger than 70% are given by GARCH models, 
historical simulation approaches, structured Monte Carlo simulation, kernel estimation and 
tail estimation. The only models which fail to provide a medium coverage of 70% are 
equally weighted moving average and tail estimation for M=15%. The fact that models with 
larger number of exceptions provide better coverage derives from the averaging effect 
induced by the computation procedure used. To assess the impact of extreme events, we 
also analyse the maximum loss to VaR ratio.   

 

9. Maximum loss to VaR ratio: measures the thickness of return distribution tail. In a 
theoretical distribution this ratio tends to infinity, emphasising the fact that value at risk 
numbers does not provide a maximum loss limit. These measures are reported in 
Graph 3.10. 

The historical simulation exhibits the largest distance between risk estimate and maximum 
actual loss. Following backtesting procedure results, this model would have had been 
penalised with a multiplier coefficient of 3.4, it follows that the maximum loss would have 
had been covered by capital charges. A similar ratio is to be found also in the case of 
exponentially weighted historical simulation model. This is not also the case for the third 
historical simulation approach, antithetic historical simulation. We can derive from here the 
observation that simple historical simulation approaches that rely heavily on the 
assumption of distribution stationarity are less adequate in modelling an exchange rate 
process with such strong trending behaviour.   

The model majority suggests a maximum loss to VaR ratio around 2, which seems to 
indicate that the minimum of 3 multiplier imposed by supervisors, is excessive. The contra-
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argument is given by tail estimation 5% model, which is classified in the first category from 
a supervision perspective and receives a multiplier of 3, but the extreme loss is 3.15 times 
larger than the risk estimate.   

 

 

 

 

 

 

 

The most accurate models from the perspective of extreme events are exponentially 
weighted moving averages and orthogonal GARCH. 

 

10. Correlation between absolute portfolio results and VaR estimate: reveals how well 
are correlated the actual changes in portfolio value with changes in risk estimates. The 
results are presented in Graph 3.11. 

For all the models, correlation coefficients with the actual absolute changes in the portfolio 
value are extremely high, but not conclusive enough considering the daily adjustment of the 
portfolio structure and value. The high correlation could reflect mostly the change in 
structure and value of the portfolio, not in the risk exposure. In a similar study, Hendricks 
(1996) obtained for portfolios constant in structure over the sample period correlations 
around 0.4 or less. 
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CORRELATION BETWEEN ABSOLUTE PORTFOLIO OUTCOME AND VAR
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Section 4 Conclusions 

Based on the results revealed by the individual measures of estimation performance 
outlined in the previous section, we can drive the features that stand out for each model 
employed to estimate value at risk.  

• Equally weighted moving average model: produces estimates close to all model 
average, but significantly variable; the failure percentage is less then the confidence 
level assumed, the model being classified in the green zone from a supervision 
perspective; however, the average VaR to uncovered loss ratio is one of the lowest in 
the sample, only 0.67; after scaling all models to attain 1% confidence level, the 
estimates provided by the equally weighted moving average model continue to 
overstate by little all model average. Based on this, we may conclude that equally 
weighted moving average model ensures relative conservative estimates of value at 
risk, the trade off between an easy to implement algorithm and the estimate accuracy 
being reflected in the high variability of results and in the low coverage percentage. 

• Exponentially weighted moving average models: tend to produce estimates below 
all model average with the associated spread positively related to the value of the 
underlying parameter lambda; results variability is moderate; the number of exceptions 
is the lowest in the models sample (2 for EWMA90 and 1 for the others per two years), 
and also the failures exhibit low magnitude.  The coverage of extreme losses with VaR 
estimates is over 90%. Moreover, finding of considerable practical importance, the 
coverage level actually attained, 99.58% is achieved with the most important 
underestimation of all model average estimates. The coefficients of correlation between 
absolute portfolio results and VaR estimate are also the largest in the sample. In order 
to choose the appropriate smoothing parameter, we have to decide which selection 
criterion should be employed. If we were interested in the model that provides the 
lowest VaR numbers, while is still consistent with the confidence level assumed, we 
would set lambda equal to 0.9. The least variable estimations and the highest extreme 
loss coverage is provided by lambda=0.96 or 0.98. A comparison with the equally 
weighted moving average model reveals advantages of exponentially weighting in the 
area of estimate accuracy and variability. From an operational perspective, 
exponentially weighted moving average method appears to be preferable.       

• Constant correlation GARCH models: produce estimates significantly below all 
models average with a reasonably high variability; do not attain desired confidence 
level (6 failures/two years), but still qualify to the green supervision model category. 
The multipliers needed to attain desired coverage are very close to unit: 1.001 and 
1.02. By scaling to attain desired coverage, provide the lowest VaR estimates in the 
sample, this being an important advantage in setting capital charges. The average 
value at risk to uncovered loss ratio is over 0.8, supporting the feature of an efficient 
conservatism degree. The maximum loss to VaR ratio is close to 1.6, being fully 
covered by the common multiplier of 3. A comparison between the two types of 
constant correlation GARCH models, GARCH(1,1) and GARCHFIT, allows the 
conclusion that GARCHFIT performs better in some regards: MRB, variability, quadratic 
loss function and the average VaR to uncovered loss ratio. Based on these features, 
we may conclude that constant correlation GARCH models exhibit a degree of 
conservatism large enough to attain the desired confidence level and also to provide 
the lowest estimates of VaR numbers and an accurate cover of the extreme losses. 
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Although the number of exceptions provided is higher than the average, it is still below 
the green category limit and the constant correlation GARCH method is not penalised 
by additional capital charges. Also, the difference between the risk estimates and the 
uncovered losses are reasonably small. Beyond the difficulties in implementing and 
correctly specifying the models for the variance process, the results obtained justify the 
recommendation of these models in value at risk estimation.    

• Orthogonal GARCH model: provides risk estimates very close to all models average, 
inducing a smaller variability compared to constant correlation GARCH models. The 
number of model exceptions is the lowest in the sample: 1 estimation failure in almost 
two years, ensuring a coverage of 99.79%, larger than assumed. Also a relative large 
figure reflects the proportion of VaR estimates on uncovered losses-86%. Although the 
coverage percentage is larger than assumed, orthogonal GARCH estimates are slightly 
below the average of all models scaled to 99% coverage estimates. Another 
remarkable result concerns the maximum loss to VaR ratio, which is only 1.17. Better 
performances obtained by the orthogonal GARCH model, regarding variability and 
accuracy, come as no surprise, considering the superior specification of the processes 
governing the orthogonal risk factor variances and the relaxation of the constant 
correlation assumption. If better statistical and operational features as accuracy and 
conservatism recommend orthogonal GARCH over constant correlation approaches, 
lower VaR numbers generated by constant correlation GARCH may justify a trade-off 
between accuracy and higher capital charges.    

• Historical simulation: examining mean relative bias measures, leads to the conclusion 
that historical simulation tends to slightly overestimate all models average, while its 
estimates variability is low. The number of exceptions is considerably higher than the 
average (9 failures for the entire estimation period), providing a lower coverage than 
assumed, only 97.9%, but the multiplier needed to attain 99% coverage is still close to 
unit. After scaling, the estimates continue to be over all model average. The main 
shortcoming on this approach is the large distance between VaR estimates and 
extreme losses. The maximum loss is 3.26 times higher than the corresponding VaR 
estimate. The average VaR to uncovered loss ratio is 0.77. Studying the number of 
model failures and their magnitude we can assess that historical simulation produces 
the weakest performances from the sample. Although from a supervision perspective 
historical simulation is an acceptable model, it is recommendable the attempt to 
improve its performances by adjusting the historical database. 

• Exponentially weighted historical simulation: the results obtained by using an 
exponentially smoothing method improve in some areas the performances of the simple 
historical simulation approach. First, MRB indicates a substantial underestimation of all 
models average (-26%), underestimation favourable under the circumstances of 99% 
coverage. But the actual coverage percentage is identical to the one offered by the 
simple historical simulation – 97.9%. After scaling with a multiplier of 1.156, this model 
continues to underestimate significantly all models average. The main disadvantage of 
the method, large distance between VaR estimate and extreme losses is not overcame 
by exponentially smoothing the data. Considering the performances slightly improved 
and the advantage of reducing the capital charges with lower VaR estimates, 
exponentially smoothing the data is fully justified in a historical simulation approach.  

• Antithetic historical simulation: by doubling the data sample in the aim of eliminating 
the trend exhibited by the exchange rates, substantial improvement of the historical 
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simulation approach performance is achieved. The estimates provided by this method 
slightly overstate all models average, indicating a superior degree of conservatism. The 
variability exhibited is the lowest in the sample. Trend elimination reduces the number 
of model failures from 9 to 5 and provides a coverage very close to the one assumed – 
98.94%. The multiplier needed for scaling to 99% coverage is 1.077. Average VaR to 
uncovered loss ratio is 74%, which places this model close to all models average. The 
main shortcoming of the historical simulation, the disproportion between extreme losses 
and corresponding risk estimates is fully eliminated, the maximum loss to VaR ratio 
being less than 2. A comparison between all historical simulation approaches indicates 
as clear winner antithetic historical simulation, method that exhibits the closest 
performances to the ones provided by the best models in the sample.    

• Structured Monte Carlo simulation produces estimates slightly over all models 
average with low variability. The small number of model failures, 4, allows for a 
coverage larger than assumed – 99.05%. After scaling all estimates to attain 99% 
coverage, structured Monte Carlo underestimates slightly all models estimates. The 
ratios between uncovered losses and VaR estimates lay in the range provided by the 
other models and the maximum loss exceeds the VaR estimate with 67%. Based on 
these performance measures, we may conclude that structured Monte Carlo simulation 
ensures moderate conservative estimates in the green model category, without 
significant drawbacks or advantages over other approaches.    

• Gaussian kernel density estimation: the small number of model failures suggests its 
conservative characteristic and induces a significantly high overestimation of all models 
average (+74%). Compared to other models that produce a similar number of 
exceptions, such high degree of conservatism is not fully justified. Even after scaling all 
models to attain desired confidence level, kernel estimation continues to substantially 
overstate all models average. The high variability associated is explained mainly by its 
systematical distance from all models average. The surprise comes from the fact that, 
while producing the largest average VaR estimates, kernel estimation VaR numbers 
cover only 74% of the extent of extreme losses. It appears that the conservative 
characteristic of this model does not manage to justify the limited accuracy and high 
variability of its estimates.    

• Tail estimation: in assessing the performances of tail estimation approaches, the 
impact of the underlying parameter M is essential. Based on MRB numbers, the 
average size of VaR estimates is lower but close to all model average in the case of 
M=5 and 10%, and substantially higher (+23%) in the case of M=15%. It follows that the 
degree of model conservatism is positively related to the size of parameter M. High 
variability can be explained just in the case of M=15% by its systematical distance from 
all models average. The number of failures qualifies tail estimation in the first model 
category. Consequently, the number of model exceptions, between 7 and 4, is 
negatively related to the degree of conservatism. The large magnitude of failures 
comes as a surprise in the case of M=15%, a high conservative model, suggesting 
possible accuracy problems. The multipliers needed to attain desired coverage are all 
close to unit: 1.059 and 1.025. After scaling, all tail estimation models produce 
estimates higher than all models average. The average VaR to uncovered losses ratio 
indicates a value lower than expected in the case of M=15%, just 67%. Moreover, the 
maximum loss exceeds VaR estimates with percentages between 215 and 144. The 
magnitude of model failures represents the main drawback on these approaches. For 
M=15%, the loss exceeds also the capital charges based on the common multiplier of 
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3. The apparent conservatism of the 15% tail estimation fails to capture the real 
magnitude of the extreme loss. If we should select the appropriate value for M, the 
cumulative percentage of the distribution tail limit, we would have to choose between 
10 and 15%. 10%, even if it is less conservative and quite variable, brings the 
advantage of lower capital charges and higher extreme losses coverage (77%). A 
percentage closer to 15 is justified in a conservative perspective, which ignores the 
lower extreme losses coverage (67%). 

 

As a final consideration, our work intended to highlight some individual features of several 
value at risk models, when applied to measuring foreign exchange exposure of a portfolio 
denominated in ROL. Even if no model was identified as being insufficiently conservative in 
its risk measurements, it was obvious that some adjustments need to be made in order to 
achieve a higher degree of accuracy and efficiency. The limitations mentioned above 
regard notably the features exhibited by the processes driving exchange rates against ROL 
and impact the use of historical data and the specification of conditional variance. Being 
aware of the limited relevance of these results for the banking regulation purposes, we trust 
in their further refinement in a future work.     
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Appendix 1 
 
 
Model MRB

1 
MRSB
2 

RMSRB
3 

VAR
4 

BLF5 QLF6 MOC
7 

AUL/V
8 

ML/V
9 

COR
10 

VC 0.06 0.04 0.54 3.80 3.00 4.18  0.67 1.64 0.90 

EWMA 90 
-0.15 -0.18 0.31 3.72 3.00 3.05  0.90 1.23 0.93 

EWMA 92 
-0.14 -0.16 0.33 3.73 2.00 2.02  0.91 1.16 0.93 

EWMA 94 
-0.12 -0.14 0.30 3.75 1.00 1.01  0.92 1.09 0.93 

EWMA 98 
-0.09 -0.11 0.26 3.82 1.00 1.00  0.97 1.03 0.93 

EWMA 96 
-0.03 -0.05 0.19 3.88 1.00 1.03  0.89 1.12 0.93 

CCG11 
-0.19 -0.21 0.26 6.47 6.00 6.82 1.00 0.82 1.58 0.88 

CCGFIT 
-0.16 -0.16 0.28 6.35 6.00 6.76 1.02 0.83 1.60 0.86 

OGARCH 
-0.02 -0.05 0.28 4.46 1.00 1.05  0.86 1.17 0.93 

HS 
-0.06 0.06 0.20 2.91 9.00 12.4 1.15 0.77 3.26 0.89 

MCS 
0.05 0.02 0.19 3.74 4.00 5.12  0.74 1.67 0.91 

AHS 
0.07 0.13 0.17 3.49 5.00 6.13 1.07 0.78 1.64 0.88 

EWHS 
-0.25 -0.16 0.31 2.91 9.00 10.9 1.15 0.74 3.16 0.92 

KE 
0.74 0.70 0.70 8.36 2.00 2.36  0.76 1.49 0.93 

TE 5% 
0.00 0.03 0.50 3.97 7.00 10.4 1.05 0.74 3.15 0.91 

TE 10% 
0.03 0.03 0.23 4.51 7.00 10.1 1.02 0.77 2.93 0.92 

TE 15% 
0.23 0.20 0.32 4.84 4.00 6.34  0.67 2.44 0.91 

 
 
                                                           
1 mean relative bias 
2 mean relative scaled bias 
3 root square relative mean bias 
4 variability 
5 binary loss function 
6 quadratic loss function 
7 multiple to obtain coverage 
8 average uncovered loss to VaR ratio 
9 maximum loss to VaR ratio 
10 correlation 



Appendix 2 
 
Estimation results for GARCH(1,1) model 
 
Dependent Variable: LAUS 
Method: ML - ARCH 
Date: 06/04/00   Time: 20:40 
Sample(adjusted): 6/18/1997 4/05/2000 
Included observations: 731 after adjusting endpoints 
Convergence achieved after 14 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001020 0.000264 3.862225 0.0001 

DUMMY 0.067545 0.000362 186.6211 0.0000 
        Variance Equation 

C 1.52E-05 2.31E-05 0.657511 0.5109 
ARCH(1) 0.028768 0.032931 0.873594 0.3823 

GARCH(1) 0.675475 0.457073 1.477828 0.1395 
R-squared 0.108977     Mean dependent var 0.001149 
Adjusted R-squared 0.104067     S.D. dependent var 0.007591 
S.E. of regression 0.007185     Akaike info criterion -7.028965 
Sum squared resid 0.037477     Schwarz criterion -6.997540 
Log likelihood 2574.087     F-statistic 22.19835 
Durbin-Watson stat 1.971437     Prob(F-statistic) 0.000000 

 
Dependent Variable: LDMK 
Convergence achieved after 18 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001028 0.000264 3.894503 0.0001 

DUMMY 0.067558 0.000354 191.0144 0.0000 
        Variance Equation 

C 1.75E-05 2.87E-05 0.609572 0.5421 
ARCH(1) 0.026896 0.033933 0.792624 0.4280 

GARCH(1) 0.630773 0.565301 1.115818 0.2645 
R-squared 0.109320     Mean dependent var 0.001148 
Adjusted R-squared 0.104412     S.D. dependent var 0.007580 
S.E. of regression 0.007174     Akaike info criterion -7.031830 
Sum squared resid 0.037360     Schwarz criterion -7.000405 
Log likelihood 2575.134     F-statistic 22.27678 
Durbin-Watson stat 1.961230     Prob(F-statistic) 0.000000 

 
Dependent Variable: LFRF 
Convergence achieved after 18 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001034 0.000266 3.894075 0.0001 

DUMMY 0.067653 0.000344 196.8855 0.0000 
        Variance Equation 

C 1.74E-05 2.98E-05 0.582510 0.5602 
ARCH(1) 0.025923 0.032981 0.786015 0.4319 

GARCH(1) 0.639320 0.581049 1.100285 0.2712 
R-squared 0.108215     Mean dependent var 0.001155 



Adjusted R-squared 0.103301     S.D. dependent var 0.007628 
S.E. of regression 0.007223     Akaike info criterion -7.018361 
Sum squared resid 0.037875     Schwarz criterion -6.986935 
Log likelihood 2570.211     F-statistic 22.02430 
Durbin-Watson stat 1.972509     Prob(F-statistic) 0.000000 

 
Dependent Variable: LGBP 
Convergence achieved after 8 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.000934 0.000235 3.974587 0.0001 

DUMMY 0.058356 0.001223 47.69628 0.0000 
LGBP(-1) 0.090312 0.048946 1.845135 0.0650 

        Variance Equation 
C 9.51E-06 6.21E-06 1.532468 0.1254 

ARCH(1) 0.146054 0.060537 2.412639 0.0158 
GARCH(1) 0.622436 0.188918 3.294738 0.0010 

R-squared 0.116990     Mean dependent var 0.001326 
Adjusted R-squared 0.110892     S.D. dependent var 0.006750 
S.E. of regression 0.006365     Akaike info criterion -7.315527 
Sum squared resid 0.029330     Schwarz criterion -7.277776 
Log likelihood 2676.167     F-statistic 19.18450 
Durbin-Watson stat 2.036751     Prob(F-statistic) 0.000000 

 
Dependent Variable: LUSD 
Convergence achieved after 8 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 

 Coefficient Std. Error z-Statistic Prob. 
C 0.000630 8.61E-05 7.324102 0.0000 

DUMMY1 0.000503 0.000268 1.880018 0.0601 
LUSD(-1) 0.286190 0.056350 5.078778 0.0000 

        Variance Equation 
C 1.27E-06 4.99E-07 2.548857 0.0108 

ARCH(1) 0.184868 0.101349 1.824075 0.0681 
GARCH(1) 0.656671 0.101895 6.444589 0.0000 
DUMMY1 1.64E-06 8.26E-07 1.983528 0.0473 
DUMMY2 -1.01E-06 4.58E-07 -2.197328 0.0280 

R-squared 0.110387     Mean dependent var 0.001361 
Adjusted R-squared 0.101762     S.D. dependent var 0.004676 
S.E. of regression 0.004432     Akaike info criterion -8.906432 
Sum squared resid 0.014181     Schwarz criterion -8.856098 
Log likelihood 3258.848     F-statistic 12.79839 
Durbin-Watson stat 1.905494     Prob(F-statistic) 0.000000 
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Estimation results for GARCHFIT model 
 
Dependent Variable: LAUS 
Method: ML - ARCH 
Date: 06/04/00   Time: 20:47 
Sample(adjusted): 6/18/1997 4/05/2000 
Included observations: 731 after adjusting endpoints 
Convergence achieved after 22 iterations 
Bollerslev-Wooldrige robust standard errors & covariance 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001047 0.000264 3.962384 0.0001 

DUMMY 0.067028 0.000816 82.15867 0.0000 
        Variance Equation 

C 4.90E-05 3.86E-06 12.69471 0.0000 
ARCH(1) 0.047290 0.047240 1.001053 0.3168 

R-squared 0.108986     Mean dependent var 0.001149 
Adjusted R-squared 0.105309     S.D. dependent var 0.007591 
S.E. of regression 0.007180     Akaike info criterion -7.030917 
Sum squared resid 0.037477     Schwarz criterion -7.005777 
Log likelihood 2573.800     F-statistic 29.64147 
Durbin-Watson stat 1.970532     Prob(F-statistic) 0.000000 

 
Dependent Variable: LDMK 
Convergence achieved after 12 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001042 0.000263 3.969909 0.0001 

DUMMY 0.068905 0.001234 55.85552 0.0000 
        Variance Equation 

C 4.82E-05 3.91E-06 12.33715 0.0000 
ARCH(1) 0.060742 0.049022 1.239087 0.2153 

R-squared 0.109301     Mean dependent var 0.001148 
Adjusted R-squared 0.105625     S.D. dependent var 0.007580 
S.E. of regression 0.007169     Akaike info criterion -7.035009 
Sum squared resid 0.037361     Schwarz criterion -7.009869 
Log likelihood 2575.296     F-statistic 29.73757 
Durbin-Watson stat 1.963748     Prob(F-statistic) 0.000000 

 
Dependent Variable: LFRF 
Convergence achieved after 11 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001054 0.000265 3.983014 0.0001 

DUMMY 0.066413 0.001560 42.58234 0.0000 
        Variance Equation 

C 4.90E-05 4.05E-06 12.08990 0.0000 
ARCH(1) 0.058246 0.047016 1.238873 0.2154 

R-squared 0.108180     Mean dependent var 0.001155 
Adjusted R-squared 0.104500     S.D. dependent var 0.007628 
S.E. of regression 0.007218     Akaike info criterion -7.020923 
Sum squared resid 0.037876     Schwarz criterion -6.995782 
Log likelihood 2570.147     F-statistic 29.39555 



Durbin-Watson stat 1.970281     Prob(F-statistic) 0.000000 
 
Dependent Variable: LGBP 
Convergence achieved after 10 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.000934 0.000226 4.137939 0.0000 

DUMMY 0.064424 0.005524 11.66361 0.0000 
LGBP(-1) 0.085790 0.050078 1.713135 0.0867 

        Variance Equation 
C 1.26E-06 1.05E-06 1.195921 0.2317 

ARCH(1) 0.198961 0.070697 2.814276 0.0049 
ARCH(2) -0.156538 0.080263 -1.950302 0.0511 

GARCH(1) 0.926779 0.052425 17.67818 0.0000 
R-squared 0.116118     Mean dependent var 0.001326 
Adjusted R-squared 0.108783     S.D. dependent var 0.006750 
S.E. of regression 0.006372     Akaike info criterion -7.323880 
Sum squared resid 0.029358     Schwarz criterion -7.279837 
Log likelihood 2680.216     F-statistic 15.83044 
Durbin-Watson stat 2.042195     Prob(F-statistic) 0.000000 

 
Dependent Variable: LUSD 
Convergence achieved after 20 iterations 

 Coefficient Std. Error z-Statistic Prob. 
C 0.000701 8.60E-05 8.150644 0.0000 

DUMMY1 0.000418 0.000236 1.770946 0.0766 
LUSD(-1) 0.208926 0.063714 3.279119 0.0010 

        Variance Equation 
C 2.89E-07 1.94E-07 1.484958 0.1376 

ARCH(1) 0.520702 0.132052 3.943157 0.0001 
ARCH(2) -0.363939 0.124018 -2.934562 0.0033 

GARCH(1) 0.831980 0.050730 16.40027 0.0000 
DUMMY1 5.19E-07 3.98E-07 1.303037 0.1926 
DUMMY2 -2.14E-07 1.76E-07 -1.218116 0.2232 

R-squared 0.097606     Mean dependent var 0.001361 
Adjusted R-squared 0.087593     S.D. dependent var 0.004676 
S.E. of regression 0.004467     Akaike info criterion -8.988290 
Sum squared resid 0.014385     Schwarz criterion -8.931664 
Log likelihood 3289.726     F-statistic 9.748220 
Durbin-Watson stat 1.753373     Prob(F-statistic) 0.000000 
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	Following the 1993 Amendment to the European Commission’s Capital Adequacy Directive, and the 1998 implementation of a similar approach in the US, banks are currently required to hold capital against market risk. There are now created the opportunities f
	As prospects for accession to the EU increase, and with the launching of the euro, CEE transition economies bank risk management practices and policies are likely to face new pressures for further mutation. New members of the EU will be expected to adopt
	This paper examines the empirical performance of several value at risk estimation techniques employed to model bank foreign exchange exposure perceived from a banking regulation perspective. We compare the performances of each model through a simulation
	We found an important dispersion between different models VaR estimates, but no model was identified as being insufficiently conservative in its risk measurement. The paper concludes that, although the tests are not precise enough to allow a categorical
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	Introduction
	‘Weaknesses in the banking system of a country, whether developing or developed, can threaten financial stability both within that country and internationally’ the Basle Committee Core Principles. In the recent years we have witnessed an unprecedented su
	The need to improve the strength of financial systems has attracted growing international concern. Numerous official bodies have recently been examining ways to strengthen financial stability throughout the world and notably in the emerging market econom
	The increase in the relative importance of trading risk in bank portfolios has obliged regulators to reconsider the system of capital requirements agreed in the 1988 Basle Capital Accord. The common framework for treating risk designed in 1988 aimed to l
	Following the 1993 Amendment to the European Commission’s Capital Adequacy Directive, and the 1998 implementation of a similar approach by the Federal Reserves, banks are currently required to hold capital against market risk defined as the risk that cha
	In a widely used definition, value at risk measures the potential loss on a portfolio over a specified period that will not be exceeded with a given probability. A VaR measure is dependent on two parameters: the holding period and the significance level.
	A formal definition of VaR may be written as:
	where �denotes the portfolio change during the holding period and � represents the significance level.
	If we let � represent the cumulative probability distribution function of portfolio returns, then
	where � denotes the inverse cumulative distribution function.
	The standards for in-the-house model construction imply that banks must calculate the distribution of their losses over a ten-day holding period using a panel of historical data of at least twelve months and must yield capital requirements sufficient to
	According to the Basle committee recommendations, market risk capital charges, denoted by MRCt are determined as follows:
	where VaRt(10,1) is the current VaRt estimate over a ten days holding period with a 0.01 significance level and M represents the multiplier indicated by the supervision authority to reflect the quality of risk management estimation models and practices f
	Strengthening the financial system’s ability to evaluate and manage market risk has been usually identified as a precondition for further market integration. This entails improving the internal risk management of individual financial institutions on the
	In the transition process, the usual elements of a well-functioning regulatory/supervisory system: ‘adequate accounting and disclosure requirements, adequate capital standards, prompt corrective action, careful monitoring of the institution’s risk manage
	The existent academic literature has been mostly concerned with measuring VaR (Duffie and Pan 1997, Linsmeier and Pearson 1996, Danielsson and De Vries 1997, Jackson, Maude and Perraudin 1997), with evaluating properties of VaR and other risk measures (A
	Our paper examines the empirical performance of several value at risk estimation techniques employed to model foreign exchange exposure from a banking regulation perspective. We compare the performances of each model through a simulation methodology for
	We found support in our attempt to model VaR for measuring foreign exchange bank exposure in Hendricks (1996), Mahoney (1996), Lopez (1997), Danielsson and De Vries (1997 and 1998), Jackson, Maude and Perraudin (1997), Kupiec and O’Brien (1997), Butler a
	Since the introduction of the simplest VaR models, a little over ten years ago, the range of techniques used to obtain VaR estimates has expanded both in number and in complexity. The original VaR model uses classical multivariate statistics. Returns are
	An example is the use of nonparametric estimates of probability distributions. Rather than starting with an assumed distribution, characterized by a few parameters like mean and variance, nonparametric estimates start with a sample of data and estimate a
	To summarize, a wide range of approaches has been developed to calculate VaR. The variance-covariance and Monte Carlo approaches require explicit assumptions to be made about the statistical distribution underlying movements in market prices (the normal
	The variance-covariance technique assumes that the market returns have a joint-normal distribution. The fixed-weight approach assumes that return covariances and variances are constant over the period of estimation; exponential smoothing moving average m
	GARCH models, first introduced by Engel (1982) and generalized by Bollerslev (1986), are designed to describe volatility as a time varying process in high frequency data. GARCH allow for both autoregressive and moving average behaviour in variances and c
	Kernel estimation uses non-parametric methods of weighting the historical data in estimating the variance-covariance matrix.
	Historical simulation uses past movements in market prices to compute a hypothetical distribution of returns.
	Antithetic historical simulation takes into account the trend behaviour of asset prices by augmenting the original data series with the negative of the profits and losses used in standard historical simulation
	Exponential historical simulation exploits the non-parametric nature of historical simulation while imposing an exponential-weighting scheme on the historical data.
	Monte Carlo simulation using normally distributed returns estimates the variance-covariance matrix using a fixed-weight variance-covariance method and estimated returns are drawn random.
	Extreme-value estimation focuses attention on estimation of a distribution’s tail.
	‘It is too early to judge how successful the various methods nonlinear modeling will eventually be. The less constrained a method is by prior information, the greater its potential for matching complex market structures. Pure black-box methods like neura
	But the use of VaR models in risk management systems should not be perceived as a global panacea. There are important shortcomings of different VaR approaches:
	VaR estimates are based on historical data and to the extent that the past may not be a good predictor of the future, VaR measure may underpredict or overpredict risk;
	VaR provides no indication of the magnitude of losses that may occur if adverse market movements are larger than predicted by the chosen confidence level. To address this problem, stress testing is developed together with VaR (specification of stress sce
	The potential for aggregating exposures in a wide array of industry and markets is both a strength and a weakness of VaR approach. The aggregating procedure may hide imbalances between exposures from different risk sources.
	The remainder of the paper is organized as follows: the first section presents the data and the simulation methodology, the second section describes the panel of models used in estimating VaR together with the estimation results, in section three is deve
	Section 1	Data and simulation methodology
	Our study employs 17th value at risk estimation approaches to model bank FX exposure: classical variance-covariance method (equally weighted moving average), five classes of exponentially weighted moving average models (with lambda coefficient values: 0.
	The data consists of daily exchange rates (reference exchange rates communicated by the National Bank of Romania) against the ROL for the following five currencies: USD, AUS, FRF, DEM and GBP. The historical sample covers the period: June 18th, 1997 – Ap
	The performances of all value at risk estimation models are determined over the sample period through a simulation methodology for a portfolio daily adjusted and containing spot position in five currencies. The portfolio is considered constant over the e
	The performance analysis consists in several steps:
	Selection of the daily random portfolio over the sample period, by drawing the positions in each currency from a normal independent distribution with the following configuration: USD, DEM and FRF daily positions ~ 50000*N(1,0.65), GBP positions ~30000*N(
	Estimation of the daily value at risk for the portfolio selected in the first step, using each of the 17th approaches for each observation in the sample period starting with June 18th 1998. For each estimation, we use a rolling window containing the 259
	Calculation (ex post) of daily outcomes from the portfolio, over the estimation sample period, as benchmark in backtesting procedures.
	Assessing the performance of each value at risk approach, by comparing the estimations obtained in step two from different approaches with the daily portfolio outcomes through statistical and operational instruments.
	Statistical features of the financial series of exchange rates against ROL (first difference in logs):
	Tests for normality assumption: all five series provide evidence of non-normality with excess kurtosis (higher probabilities for extreme events than indicated in the normal distribution – fat tails) and positive skweness, therefor, more than 50% probabil
	Homoscedasticity assumption: a simple visual inspection of the series indicates a  volatility clustering process (volatility mean reverts), the alternance between high and low volatility periods and even more, a possible correlation between the variance
	Stationarity assumption: the unit root null hypothesis for the first difference in logs time series of exchange rates is rejected by ADF unit root test for the 1% critical level, as follows:
	Serial independence assumption: the autocorrelation coefficients for 36 lags lie between –0.1 and 0.1, with one major exception: the autocorrelation coefficient of the LUSD serie for the first lag is 0.321. The autocorrelation coefficients are presented
	For confirming the low evidence of autocorrelation, we also use Box-Liung Q statistic. For the LAUS, LFRF and LDEM, no autocorrelation coefficient is significantly different form zero at the 5% confidence level. For LGBP and LUSD series, all the coeffici
	Autocorrelation analysis must be extended also to the squared log changes in the exchange rate series, in the aim of identifying a possible ARCH process. The serial autocorrelation coefficients for the squared log changes are statistically significant fo
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	Section 2	Value at risk estimation models and results
	In this section we will discuss the methods used to estimate value at risk, together with the estimation results. Each model estimation was implemented in Eviews 3.1 through the programes presented in Appendix 3.
	Variance-covariance (or moving average) models presume a normal distribution for market returns and serial independence. All moving average models estimate the unconditional variance of the returns time series based on the restrictive assumption of const
	Define Rt  to be the return matrix at moment t, and �the variance-covariance matrix of Rt. The return on a portfolio containing spot FX positions can be expressed as a linear combination of the returns on individual positions. Portfolio sensitivity to mo
	For �, �, where
	Once a distribution of possible profits and losses has been specified, standard properties of normal distribution are used to determine the loss that will not be exceeded (1-alfa) percent of the time, i.e. value at risk. The model calibration consists in
	The equally weighted moving average method calculates a given portfolio variance using a fixed amount of historical data. Each element from the variance-covariance portfolio matrix is estimated as follows: the variance for each risk factor is computed as
	The main drawback on the equally weighted moving average method is represented by the fact that stress events cause ‘ghost features in volatility’ (Alexander 1998).  An extreme event will keep volatility estimates high for a period equal to the time leng
	Exponentially weighted moving average method places more weight on more recent observations and this procedure eliminates the ghost features in volatility. Because the weights decline exponentially, the most recent observations receive more weight than t
	For the log returns is hypothesized the following random walk model:
	The variance-covariance matrix is given by:
	This can be rewritten as
	which implies a first order autoregressive structure for the variance/covariance matrix that is a form of IGARCH model without constant term. In this expression, � represents the volatility speed of reaction to market events, and the coefficient of lagge
	Exponentially weighted moving average is a quick and easy method that captures the volatility clustering. Current estimates respond quickly to changing market conditions, but the volatility and correlation forecast are still constant.
	Another problem with exponentially weighted moving average method is that there is no optimal way to choose the smoothing parameter. JP Morgan recommend for lambda a value of 0.94, while usually a smaller persistence is obtained from empirical estimation
	Historical simulation is the simplest non-parametric method of value at risk estimation, strongly advocated by Hendricks (1996); it makes no assumptions about the properties of the empirical returns distribution. Historical simulation uses past movements
	The distribution of profits and losses is constructed by subjecting the current portfolio structure to actual changes in market factors experienced in the last T observations. T sets of hypothetical values for each risk factor are constructed using their
	The value at risk for the current portfolio is set equal to the percentile of the hypothetical P&L distribution associated with the required level of confidence. For 99% coverage estimation over a rolling window of 259 past observations, value at risk is
	The main shortcoming on this method is the fact that extreme percentiles are difficult to estimate accurately without employig a large sample of data. But a large sample of data is not consistent with non-stationarity and induces the problem of ghost fea
	Another issue related to historical simulation is the trending behaviour often exhibited by financial series. If the data sample is not large enough, the possible outcomes generate by a trend change are not taken into account. Adressing this problem, Hol
	Boudoukh (1998) proposes another hybrid approach that eliminates the distortion caused by the sample size and non-stationarity in the return distribution, exponential historical simulation. This approach imposes a weighting scheme on data, whilst exploit
	Each observation from the past is associated with a weight according to its distance from the current observation. The returns are then ascendingly ordonated. The weights associated to each observation provide the probability density function of the hypo
	GARCH models
	As we documented in the first section of this paper, exchange rate volatility is a time varying process in high frequency data and periods of high volatility tend to cluster. To capture this, many authors employed ARCH models, first introduced by Engel (
	The GARCH regression model contains two equations: one for the expected returns (assumed to be very simple) and another for the returns variance. In the GARCH (p,q) model proposed by Bollerslev (1986), the conditional variance takes the form of:
	The parameters are estimated by constrained maximum likelihood. In the simples GARCH(1,1), vanilla GARCH, the parameter �  determines the volatility speed of reaction to market events, while �determines the volatility persistence in estimates.  GARCH vol
	The next step in estimating a GARCH model is the specification of the mean equation, which is usually a random walk model, ARMA(2,1) for daily observations, or AR(2).
	The advantages of GARCH models consist in providing a convergent volatility term structure and in estimation of optimal parameter. The main limitations regard estimation problem and difficulties in achieving the convergence for multivariate models. In or
	A common approach to estimate a portfolio variance is the constant correlation GARCH model proposed by Bollerslev (1990). This model estimates each diagonal element of the variance-covariance matrix using a univariate GARCH model. The constant correlatio
	In modeling the variance process followed by the exchange rates against ROL we found to be the appropiate speciffication an AR(1) process for the mean equation of GBP and USD, and a constant equation for the other three currencies mean equations. In all
	For the variance equation, based on previous insights, we tried to estimate first a vanilla GARCH, which proved not to be satisfactory for all the exchange rates. It appears, as suggested in the first section of this paper by the pattern in the ACF of th
	For standard errors estimation we used the heteroscedsticity consistent estimator proposed by Bollerslev and Woodridge (1989), that minimizes the problem of innovations non-normality. The GARCH parameter estimation algorithm used is Marquandt with initia
	For the first three currencies in the portfolio (AUS, DEM and FRF), the variance process exhibits low persistence in volatility estimates together with very unstable coefficient estimates obtained from the rolling window of 259 historical observation. Th
	The variance equations for GBP and USD, better specified, indicate high persistence in volatility estimates. Such high persistence is usually explained either by the frequency of financial data observations, or by a regime switching volatility process. L
	Structural changes in the variance process are usually originated in changes of economic policy or institutional reforms, therefor regime switching volatility models are appealing instruments to be used in transition countries, where economic and institu
	One approach in modelling a regime switching volatility is the use of dummy variables to identify the deterministic changes in the variance process and to separate periods with different volatility regimes. If the dummy variables are found to be signific
	The solution chosen to reduce the persistence in volatility estimates for USD/ROL exchange rate (first difference in logs) and to allow forecast convergence, consists in introducing two dummy variables in the variance equation in order to separate betwee
	For the first model estimated, vanilla GARCH, both dummy variables are statistically significant and the associated coefficients have the expected sign: DUMMY1 is positively related to the level of variance, while DUMMY2 is negatively related to the vari
	In GARCH(2,1) model, the coefficients of the two dummy variables are no longer statistically different form zero, at a confidence level of 10%, but they still manage to reduce the persistence of volatility estimates below unit. The GARCHFIT estimation re
	Another approach to model portfolio variance using univariate GARCH estimation- orthogonal GARCH - was first introduced by Engle, Ng and Rotschild (1990) and further developed by Alexander and Chibumba (1998). This approach uses the principal component a
	The first step in estimating VaR with orthogonal GARCH consists in determining the principal components and risk factor orthogonalization. Because the principal components are orthogonalised, the covariances modelling is no longer neccesary and the numbe
	Let R denote the observed return matrix (T*k). W refers to the eigenvectors matrix of R’R. the ortogonal principal components are P1, P2, P k , with
	[P1 P2 …P k]=RW
	A change in the risk factor I can be written as a linear combination of the principal components, the weight being given by the I-th eigenvector.
	R=PW’ => Ri =wi1P1+ wi2P2 +…+wikPk
	The variance-covariance matrix is then given by:
	For modeling the variances of the principal components, we used an univariate constant-correlation GARCH(1,1) specification. The problems associated with the estimation of constant correlation GARCH, high persistence, different specification forms among
	Structured Monte Carlo simulation
	For generating a sequence of random variables with zero mean and a variance-covariance matrix that replicates the observed matrix at a certain moment, a specific form of Monte Carlo simulation is used. The structured Monte Carlo simmulation provides a se
	The first step in the structured Monte Carlo simulation implies a Cholesky decomposition of a given variance-covariance matrix.
	,  A and A’ are triangular matrix
	The neat step consistes in generating a n*1 vector, denoted by Z, of random independent variables drawn from the standard distribution. Let Y=AZ, where Y elements have unit variance and are correlated according to the given variance-covariance matrix.
	This method provides individual random elements of the possible profits and losses vector that are consistent with the given correlation between the market factors. The simulation is repeated thousands of times in order to generate a representative distr
	The hypothetical profits and losses are sorted ascendingly, and the value at risk is set equal to the percentile of the distribution associated with the given confidence level. The estimation results are presented in Graph 2.9.
	Gaussian Kernel density estimation model represents a combination of historical simulation and normal kernel estimation provided by Butler and Schachter (1996) aiming to improve the precision of VaR non-parametric estimate based on historical observation
	Gaussian kernel estimation is obtained form an estimated portfolio return distribution that is continuous and differentiable. Thus, the kernel density estimation produces a non-parametric estimate of the continuous probability distribution function of po
	The Gaussian kernel density function, �, attaches a normal pdf to each data point. It’s important to mention that the use of a normal kernel estimation does not imply parametrization of final estimate, smoothing could be done with any continuous shape. T
	The Gaussian kernel estimate of the probability density function of the portfolio returns is given by:
	The kernel density estimation method is based on the hypothetical profits and losses discrete distribution constructed in the historical simulation. Another ascendingly sorted larger (1000 observations) data series is generated in order to represent the
	
	The cumulative distribution function for each data point is obtained by summing all discrete pdf values  that preced the current observation. The value at risk estimate is set equal to the percentile of the cdf associated with the given confidence level.
	Extreme return (tail) estimation
	Vaue at risk analysis highly depends on the accuracy of extreme returns estimation. As a basic rule, the properties of the tail return distribution are significantly different from those of the process generating them. Fat tails phenomenon is frequently
	Extreme value technique focuses attention on the estimation of the distribution’s tails. These techniques use the larges or the smalles realizations of the data series to estimate the tail index, which is a measure of the tail thickness. The estimation m
	The simplicity of extreme value estimation derives from the fact that extreme value distribution belongs to one of just three possible distribution famillies, regardless the original return distribution. Particularly for financial series, if the distribu
	f(x)=exp(-xl), if x>=0 and zero otherwise.
	The only parameter that needs to be estimated is the tail index. The first step in estimating the tail index implies sorting ascendingly the hypothetical profits and losses distribution constructed as in the historical distribution. The maximum likelihoo
	In our analysis we employed three values for the tail cumulative distribution function: 5%, 10% and 15%. The estimation results are shown in Graphs 2.11 to 2.13.
	For M and ? known, the extreme quantile estimate is given by:
	Two of 731 simulated portfolios are defined by small net positions generated from a compensation between large long and short positions. For these two portolios, value at risk estimates are quite large, some models identifying possible losses larger than
	Section 3 	Estimation performance analysis
	Although the supervision authority does not indicate a specific approach to be used in VaR estimation, the penalties associated with internal model failures in accurately forecasting the distribution of future losses raise the issue of model selection an
	Performance assessment is based in our study on a range of tests that address the relative size and variability of VaR estimates, accuracy features from a backtesting perspective and nevertheless efficiency in setting capital charges. Being aware that th
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	Mean relative bias: measures the relative size and average conservatism of different VaR estimation approaches (Hendricks 1996). This performance criterion points out the extent to which different VaR techniques produce risk estimates of similar average
	Given N models and T value at risk estimates from each model, mean relative bias of I model is expressed as the average of daily differences, in percentage terms, between the estimates produced by model I and the average of all models estimates:
	Given the MRB numbers for all models, it appears to be quite a large dispersion between estimates provided by different VaR approaches. The spread is mostly induced by three models: kernel estimation, tail estimation 15% and exponentially weighted histor
	As suggested by MRB, the model that produces the most conservative estimates of value at risk is Gaussian kernel estimation, its risk estimates being, on average, with 70% higher than all models average. The next most conservative model is tail estimatio
	Evaluating the performances of different underlying parameters indicates, in the case of exponentially weighted moving averages, that the degree of estimates conservatism is positivelyy related to lambda coefficient, which is also true for M coefficient
	Considering the evidences of non-normality presented in the first section, we would expect models heavily based on the normality assumption to underpredict the estimation provided by other models. This is the case for the models like equally and exponent
	Root mean square relative bias examines the degree to which the risk measures tend to vary around the average risk measure for a given observation. This statistic acts like a standard deviation measure.
	RMSRB emphasises the fact that for any given moment, dispersion between the risk estimates produced by different models is likely to occur.
	Root mean square relative bias is computes as:
	RMSRB statistic captures two different effects: the extent to which a given model estimate systematically differs from all models average and the intrinsic variability of the model estimate. The RMSRB numbers are shown in Graph 3.2.
	For the majority of the models, RMSRB tends to lay between 0.2 and 0.3. Models that provide the least variable estimates are simple and antithetic historical simulation, structured Monte Carlo simulation and EWMA(0.98). All exponentially weighted moving
	By comparing the two statistics, MRB and RMSRB, we can explain the highest values of RMSRB exhibited by kernel estimation and tail estimation 15% by their high degree of conservatism. This in not the case for equally weighted moving average and tail esti
	Variability assumes a zero mean for all models average, but it has the disadvantage of not being scale independent.
	Variability is computed as:
	Even if variability is no longer scale independent, we can assess that the largest degree of variability is still associated with kernel estimation results. Also over the average variability is produced by constant correlation GARCH models. The lowest es
	Binary loss function: as measure of accuracy (conservatism at the right time) counts the number of model estimate failures (moments when the risk measure estimate is lower than the actual loss on the portfolio). Binary loss functions are the instrument u
	LI,t+1=	1 f LI,t+1<VaRI,t
	0 if LI,t+1>=VaRI,t
	Based on backtesting results over a given period (usually 1-year), the models are classified in three categories: the green zone (maximum number of exceptions/year 4), the yellow zone (maximum number of exceptions/year 9) and the red zone (more than 10 e
	Given the total number of exceptions recorded in two years, the majority of the models are classified in the green zone: equally and exponentially weighted moving averages, constant correlation and orthogonal GARCH models, structured Monte Carlo simulati
	Only two models are allotted to the yellow zone, both based on historical simulation: simple and exponentially weighted.
	None of the models falls into the red penalising zone.
	Binary loss functions also allow assessing if a given model attains the confidence level for which it was designed. If one model provides the desired coverage, in our case 99%, the failure percentage should be below 1%. The confidence level attained indi
	The models that provide the assumed confidence level are the equally and exponentially weighted moving average, orthogonal GARCH, structured Monte Carlo, kernel estimation and tail estimation for M=15%. The antithetic historical simulation is also very c
	As a measure of accuracy, the confidence level attained indicates as conservative the techniques based on moving averages, tail estimation 15%, structured Monte Carlo and kernel estimation. Models with lower performances are based on historical simulatio
	Quadratic loss function accounts, besides the number of model’s exceptions, also their magnitude, being a better instrument in judging the accuracy degree of an estimate then the binary loss function. Moreover, large failures are penalised also by the qu
	LI,t+1=		1+( LI,t+1 -VaRI,t)2 if LI,t+1<VaRI,t
	0 if LI,t+1>=VaRI,t
	The quadratic loss function values for all the models are plotted in Graph 3.6.
	Quadratic loss function brings additional information in the aim of discriminating between models that provide the same coverage level. From the models that provide the expected coverage level, the most accurate estimations are produced by the exponentia
	Regarding the models that don’t provide the desired confidence level, discrimination between historical simulation approaches: simple and exponentially weighted is allowed by the quadratic loss function results. Exponentially weighted method is less pena
	Multiple needed to attain desired coverage: in order to enforce the comparison between the uncovered loss magnitude induced by various models, a useful tool is the multiple needed to attain coverage, which measures the dimension of adjustments necessary
	FI=TI(1-alfa)   where  FI= sum  	1 if LI,t+1<XIVaRI,t
	0 if LI,t+1>=XIVaRI,t
	The adjustments necessary for models that are not consistent with the assumed confidence level suggest multiples very close to unit. The largest multiple is required by the historical simulation approaches, leading to a possible indication of inadequacy
	Considering again the normality assumptions, it appears to be relevant a comparison between the coefficients indicated by the normal distribution for the transition from a given confidence level to another one, and the coefficients needed by the empirica
	Mean relative scaled bias: after scaling all models to ensure a full 99% coverage percentage, it might be relevant to revert to the mean relative bias analysis. The results are presented in Graph 3.8.
	The initial ranking is still valid, after scaling the estimates with the multiples associated. The estimates closest to all model average are produced by structured Monte Carlo simulation, tail estimation 5 and 10%, orthogonal GARCH and equally weighted
	A finding of considerable practical significance, in fact the idea behind MRSB, is to identify the model that, while still offering full 99% coverage, produces the lowest average value at risk estimates. From this point of view, the recommended models ar
	Average VaR to uncovered loss ratio: measures the average size of the loss not covered by the risk estimation.
	A given VaR number does not provide information about the magnitude of possible losses that occur within the given confidence level, in our case 1%. Nevertheless, this information is essential in risk management. The size of extreme losses represent an u
	The most accurate estimations of uncovered losses are provided by exponentially weighted moving average models, starting from lambda=0.96, for which average VaR estimates cover 97% of the loss. Loss coverage larger than 70% are given by GARCH models, his
	Maximum loss to VaR ratio: measures the thickness of return distribution tail. In a theoretical distribution this ratio tends to infinity, emphasising the fact that value at risk numbers does not provide a maximum loss limit. These measures are reported
	The historical simulation exhibits the largest distance between risk estimate and maximum actual loss. Following backtesting procedure results, this model would have had been penalised with a multiplier coefficient of 3.4, it follows that the maximum los
	The model majority suggests a maximum loss to VaR ratio around 2, which seems to indicate that the minimum of 3 multiplier imposed by supervisors, is excessive. The contra-argument is given by tail estimation 5% model, which is classified in the first ca
	The most accurate models from the perspective of extreme events are exponentially weighted moving averages and orthogonal GARCH.
	Correlation between absolute portfolio results and VaR estimate: reveals how well are correlated the actual changes in portfolio value with changes in risk estimates. The results are presented in Graph 3.11.
	For all the models, correlation coefficients with the actual absolute changes in the portfolio value are extremely high, but not conclusive enough considering the daily adjustment of the portfolio structure and value. The high correlation could reflect m
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	Section 4	Conclusions
	Based on the results revealed by the individual measures of estimation performance outlined in the previous section, we can drive the features that stand out for each model employed to estimate value at risk.
	Equally weighted moving average model: produces estimates close to all model average, but significantly variable; the failure percentage is less then the confidence level assumed, the model being classified in the green zone from a supervision perspectiv
	Exponentially weighted moving average models: tend to produce estimates below all model average with the associated spread positively related to the value of the underlying parameter lambda; results variability is moderate; the number of exceptions is th
	Constant correlation GARCH models: produce estimates significantly below all models average with a reasonably high variability; do not attain desired confidence level (6 failures/two years), but still qualify to the green supervision model category. The
	Orthogonal GARCH model: provides risk estimates very close to all models average, inducing a smaller variability compared to constant correlation GARCH models. The number of model exceptions is the lowest in the sample: 1 estimation failure in almost two
	Historical simulation: examining mean relative bias measures, leads to the conclusion that historical simulation tends to slightly overestimate all models average, while its estimates variability is low. The number of exceptions is considerably higher th
	Exponentially weighted historical simulation: the results obtained by using an exponentially smoothing method improve in some areas the performances of the simple historical simulation approach. First, MRB indicates a substantial underestimation of all m
	Antithetic historical simulation: by doubling the data sample in the aim of eliminating the trend exhibited by the exchange rates, substantial improvement of the historical simulation approach performance is achieved. The estimates provided by this metho
	Structured Monte Carlo simulation produces estimates slightly over all models average with low variability. The small number of model failures, 4, allows for a coverage larger than assumed – 99.05%. After scaling all estimates to attain 99% coverage, str
	Gaussian kernel density estimation: the small number of model failures suggests its conservative characteristic and induces a significantly high overestimation of all models average (+74%). Compared to other models that produce a similar number of except
	Tail estimation: in assessing the performances of tail estimation approaches, the impact of the underlying parameter M is essential. Based on MRB numbers, the average size of VaR estimates is lower but close to all model average in the case of M=5 and 10
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