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Abstract 

Normal mixture (NM) GARCH models are better able to account for leptokurtosis in financial data and 

offer a more intuitive and tractable framework for risk analysis and option pricing than student’s t-

GARCH models. We present a general, symmetric parameterisation for NM-GARCH(1,1) models, derive 

the analytic derivatives for the maximum likelihood estimation of the model parameters and their standard 

errors and compute the moments of the error term. Also, we formulate specific conditions on the model 

parameters to ensure positive, finite conditional and unconditional second and fourth moments. 

Simulations quantify the potential bias and inefficiency of parameter estimates as a function of the mixing 

law. We show that there is a serious bias on parameter estimates for volatility components having very 

low weight in the mixing law. An empirical application uses moment specification tests and information 

criteria to determine the optimal number of normal densities in the mixture. For daily returns on three US 

Dollar foreign exchange rates (British pound, euro and Japanese yen) we find that, whilst normal 

GARCH(1,1) models fail the moment tests, a simple mixture of two normal densities is sufficient to 

capture the conditional excess kurtosis in the data. According to our chosen criteria, and given our 

simulation results, we conclude that a two regime symmetric NM-GARCH model, which quantifies 

volatility corresponding to ‘normal’ and ‘exceptional’ market circumstances, is optimal for these 

exchange rate data.  
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1. Introduction 

One of the main lines of research in finance is focused on finding an appropriate quantitative 

description for market returns. Already forty years ago, Mandelbrot (1963) and Fama (1965), 

followed by many others, showed that time invariant normal distributions do not offer an appropriate 

framework, given the excess kurtosis and volatility clustering that characterize returns in financial 

markets. Consequently there has been a keen interest in developing tractable non-normal models for 

option pricing and risk analysis. In particular, there is a large growing literature on the class of 

hyperbolic distributions, pioneered by Barndorff-Nielsen  (1977) and lately developed by Eberlein 

and Keller (1995) and Barndorff-Nielsen and Shephard (2001, 2002).  

 

One of the simplest and most tractable hyperbolic distributions is the mixture of normal densities, 

introduced to the financial community by Ball and Torous (1983) and Kon (1984).1 Normal mixture 

(NM) densities are weighted sums of normal densities of the form: 
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where [p1, p2, …, pK] is the positive mixing law, with   and  are normal 

density functions. We use the notation for a random variable 

whose distribution is characterised by a density function of this form.  
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In stock and exchange rate (FX) markets, leptokurtic densities are known to offer a better description 

of the unconditional returns densities than the normal density, when returns are measured at daily or 

intra-day frequency. Kon (1984) argued that a mixture of normal distributions fits stock returns 

distributions better than the student’s t distribution. For exchange rate returns, as shown for example 

by Boothe and Glassman (1987), both the student’s t and the normal mixture distribution offer a better 

description of the data than the normal model. 

 

One advantage of the normal mixture over the student’s t model for unconditional returns 

distributions is that intuitive interpretations can be placed in the normal mixture framework. For 

example, Ball and Torous (1983) applied normal mixture models to risk analysis, where the individual 

distributions in the mixture represent different market circumstances and the mixing law gives the 

probabilities of these states. In the case of a mixture of two normals we can differentiate between 

normal and unusual market conditions, depending on the arrival of new relevant information. Such a 

distribution may also be supported by the seasonal changes in volatility, for instance the day-of-the 

week effect as in McFarland, Petit and Sung (1982). There are also behavioural models to support the 
                                                      
1 As early as forty years ago, Fama (1965) already discussed a simple form of the normal mixture distribution for returns. 
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use of normal mixtures on market data. For example, the normal densities in the mixture may arise 

from the different types of traders in the market, having different expectations regarding returns and 

volatilities according to which they form their own prices and trade. In this context it is the 

proportions of the different types of traders that determine the mixing law (Epps & Epps, 1976). 

 

Turning now to the literature on conditional densities of market returns, a key issue for modelling 

returns in all financial markets is the time-variation in volatility. The option theoretic approach treats 

volatility as a continuous-time process.2 In this paper we focus on the classic econometric approach to 

volatility modelling – the generalised autoregressive conditional heteroscedasticity (GARCH) models 

that were pioneered by Engle (1982) and Bollerslev (1986). For example, in the univariate symmetric 

normal GARCH(1,1) model, the regression equation for the return yt has conditionally normal errors:  

  ),0(~|,' 2
1 ttttt NIy σεε −+= γXt

and a symmetric deterministic model for the conditional variance of these errors is given by: 3 

 , where  2
1

2
1

2
−− ++= ttt βσαεωσ ,0>ω    ,0, ≥βα    1<+ βα ,    (2) 

 

In such a model (with daily data) today’s conditional variance (σt
2) is affected by yesterday’s squared 

unexpected return ( ) and yesterday’s conditional variance. Heavy tails in unconditional returns 

distributions can be captured by even the simplest GARCH(1,1) models, where the conditional returns 

distributions are assumed to be normal.  

2
1−tε

 

Westerfield (1977), McFarland, Petit and Sung (1982), Boothe and Glassman (1987), Hsieh (1989) 

and Johnston and Scott (2000) have concluded that, in daily or higher frequency data, the observed 

leptokurtosis in both conditional or unconditional returns is often higher than predicted by the normal 

GARCH(1,1) model. Consequently several heavy-tailed conditional densities have been considered in 

the GARCH framework, including the Student’s t-GARCH model introduced by Bollerslev (1987) 

and developed by Harvey and Siddique (1999) and Brooks, Burke and Persand (2002), amongst 

others. Non-distributional models, like the semi-parametric ARCH model of Engle and Gonzalez-

Rivera (1991) have also been considered. In the financial risk analysis framework, these models yield 

returns distributions that are more realistic than the simple normal GARCH returns distributions. 

However, these models are not very tractable. Analytic derivatives are too complex to derive for the 

model parameter estimates and their standard errors, necessitating the use of numerical methods. 
                                                      
2 The volatility process can be deterministic or stochastic. Deterministic models assume that volatility changes in time 
according to a predetermined function; popular approaches are the implied tree local volatility approach introduced by 
Dupire (1994) and the CEV model developed by Cox and Ross (1976). Stochastic volatility models assume that volatility 
follows a Brownian diffusion process, as in the models developed by Hull & While (1987), Heston (1993), Stein & Stein 
(1991) and many others. There are also several approaches that combine the option-pricing and statistical volatility schools, 
one of the most important being the GARCH option pricing model developed by Duan (1995) and Heston and Nandi (2000). 
3 Parameter conditions are needed in order to ensure positivity for the second moment. 
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Numerical methods would also have to be applied if diffusion limits of the t-GARCH (or semi-

parametric GARCH) process were used for stochastic volatility option pricing models. The price 

density would have no simple analytic properties, and the relationship between these option prices and 

Black-Scholes prices would be very complex indeed.  

 

These observations lead to another advantage of the normal mixture over the student’s t framework 

for modelling conditional returns distributions. Analytic results for normal models may be easily 

translated into the normal mixture setting. Closed-forms for normal GARCH option prices have a 

straightforward extension to analytic forms for normal mixture GARCH option prices.4,5 Also, 

analytic derivatives for GARCH model parameter estimation may be derived, as in this paper.   

 

Recently, several authors have examined the class of ‘NM-GARCH models’, i.e. GARCH models 

where errors have a normal mixture conditional distribution. The simplest model of this form, treated 

by Roberts (2001), has error conditional densities that are a mixture of two normal densities where 

one of the components has constant variance. Earlier, Vlaar and Palm (1993) considered another 

restricted form of NM-GARCH, assuming a mixture of two normal distributions where the difference 

between the instantaneous variances of the components was constant, this way incorporating only 

constant jumps in the level of the variance. Another restricted NM-GARCH model is that of Bauwens, 

Bos and van Dijk (1999) and Bai, Russell and Tiao (2001, 2003) where the ratio of the two 

instantaneous variances is constant, so the instantaneous kurtosis is constrained to be constant. In a 

recent discussion paper, Haas, Mittnik and Paolella (2002) specified the general framework for 

NM(K)-GARCH(p, q) models, assuming an inter-dependent autoregressive evolution for the variance 

series: 

 tty ε+= γX t '  
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4 The tractability of normal mixture densities has led to their extensive use for option pricing. Recently Brigo and Mercurio 
(2000, 2001) proved that if the risk neutral density of the log price is a normal mixture then, under certain conditions, the 
local volatility function has a simple analytic form. A consequence is that option prices and hedge ratios are simply averages 
of Black-Scholes prices and hedge ratios weighted by the mixing law. Consequently, closed-form normal mixture GARCH 
option prices will be weighted sums of the closed-from normal GARCH option prices derived by Heston and Nandi (2000), 
where the weights are those given in the mixing law. 
5 Also, the short-term implied volatility smile effect of the normal mixture diffusion local volatility model matches the term 
structure of excess kurtosis that is implied by statistical volatility models, such as GARCH (Alexander et. al., 2003). 
Although the diffusion limit of the normal mixture GARCH will be a stochastic volatility model, recent research on the 
normal mixture diffusion encompasses this interpretation, where the mixing law gives the probabilities that the volatility 
takes a specific value. Normal mixture price (and discrete time returns) densities also result from other stochastic volatility 
models – see Andersen, Bollerslev and Diebold (2002) and Barndorff-Nielsen and Shephard (2002). 
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The individual variances are related through their common dependence on εt and also through cross-

equation effects (where lagged values of the kth variance component affect the current value of each 

variance component). However, as Haas, Mittnik and Paolella have observed, the cross dependence of 

individual variances does not appear to lead to significant improvements of the model.   

 

These models are related to another important GARCH model with non-normal error distributions, the 

Markov Switching (MS) GARCH model – both of them assume more than one volatility regime and 

both have K individual conditional variance equations. The difference between the two models is that, 

whilst a MS-GARCH model estimates the probability (time-varying) that each observation belongs to 

a given volatility regime, for the NM-GARCH model what is important is the overall probability 

(time-invariant) that a given regime occurs over the entire sample. Hamilton and Susmel (1994) and 

Cai (1994) introduced the MS-ARCH model, but also concluded that GARCH models with regimes 

are impossible to estimate due to the dependence of the instantaneous volatility on the ruling regime. 

Later, a tractable MS-GARCH model was presented by Gray (1996) and a modification of this was 

suggested by Klaassen (1998). Here the variance, instead of being equal to the variance of the existing 

regime (as it would be in a pure MS model), is the weighted average of all the regime-specific 

variances, no matter what is the ruling regime. The model is basically a combination of normal 

mixture and Markov switching GARCH models. It is similar to a normal mixture specification in the 

sense that the conditional distribution of the error term is a normal mixture, but it is a Markov 

switching model in the sense that, having time-varying probabilities, the model estimates the regime 

for each time step.  

 

The purpose of this paper is to extend the literature on symmetric normal mixture GARCH models in 

the following ways: (1) to derive analytic expressions for the derivatives in the maximum likelihood 

optimisation and standard error computation, thus avoiding the need for time-consuming and 

imprecise numerical methods; (2) to compute the moments of the error term; (3) to derive explicit 

parameter conditions for the positivity of the second and fourth moments of the error term; (4) to 

assess the potential bias and inefficiency in parameter estimates, as a function of the mixing law 

parameters; and (5) to determine the optimal number of normal densities in the mixture when the 

model is applied to historical returns. To achieve this last aim we apply symmetric NM(K)-

GARCH(1,1) models to three US dollar exchange rates: the British pound, the euro and the Japanese 

yen, with one, two and three normal densities in the mixture.  

 

The structure of the paper is the following: the next section describes the symmetric NM(K)-

GARCH(1,1) model: a symmetric GARCH(1,1) with errors having conditional densities that are a 

mixture of K zero mean normal densities. Section three presents the simulation results for the 

estimation accuracy in the NM(2)-GARCH(1,1) model. Section four surveys the existing literature on 
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exchange rate modelling, describes the historical data used in this study and discusses our empirical 

results. Section five concludes. 

 

2. The Symmetric NM(K)-GARCH(1,1) Model 

The general model (3) as formulated by Haas, Mittnik and Paolella (2002) has a very large number of 

parameters. Since there is no demonstrated advantage of allowing for cross-equation effects, or of 

using more than one lag in each of the individual conditional variance equations, we shall examine 

only this form of NM-GARCH model, which we label the NM(K)-GARCH(1, 1) models. Also, since 

the focus of the GARCH is a volatility model and not a returns model, we shall assume that the 

conditional mean equation contains no explanatory variables, not even a constant, so that yt = εt.6 

Finally, and only this assumption has an obvious limit on our results, we shall assume the error term 

follows a conditional normal mixture distribution with zero mean: 

),...,;0,...,0;,...,(~ 22
1111 KttKKtt ppNMI σσε − , ,    (4) ∑
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=
K

i
ip

1

1

where the density  is the normal mixture density with φ∑
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)()( εφεη i, i = 1,…,K representing 

K zero-mean normal density functions with variance at time t given by σit
2. A mixture density of 

normal densities with the same means has leptokurtosis – that is, it has heavier tails than the normal 

density of the same variance – but no skewness. Thus our results can only be applied to markets 

where the underlying price densities are expected to be symmetric and fat-tailed: that is, the foreign 

exchange markets. 

 

The NM(K)-GARCH(1,1) model requires K equations to specify the conditional variance, and in the 

symmetric case the variance of each normal in the mixture is assumed to follow a GARCH(1,1) 

process: 
2

1
2

1
2

−− ++= ititiiit σβεαωσ   i = 1,…,K      (5) 

 

Since p1 + …. + pK = 1, the last mixing parameter can be expressed as a function of the others, so the 

symmetric NM(K)-GARCH(1, 1) model that we study here has 4K-1 parameters: 

)',,,...,,,,,,,,...,( 22211111 KKKKpp βαωβαωβαω−=θ . 

To obtain the optimal values for the parameter estimates, we maximize  using a gradient 

method.

[∑
=

T

t
t
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)(ln εη ]

                                                     

7,8 In the earlier studies on normal mixture GARCH models, numerical approximations were 

 
6 after demeaning the series 
7 Common algorithms used for ML optimisation are the Berndt-Hall-Hall-Hausmann (BHHH) algorithm – see Bollerslev 
(1986) – which approximates the Hessian with the first derivatives and the class of quasi-Newton methods. The most 
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implemented for the gradient vectors used to derive the optimal values for the parameter estimates and 

the Hessian matrices that are required to estimate the standard errors of the parameters. Here, in 

Appendix A, we derive analytic expressions for the first and second order derivatives of the likelihood 

function with respect to the parameters for the symmetric NM(K)-GARCH(1,1) model. Consequently, 

these have been used in a more efficient implementation of the optimisation algorithm to obtain the 

simulation and historical estimation results reported in this paper. Also, in order to avoid estimation 

problems and to ensure the conditional (instantaneous) and unconditional (long-term) variance and 

kurtosis of the error term exist and are positive and finite, we have imposed restrictions on the 

parameters (in the case that K ≥ 2) as follows: 

 

R1. To avoid negative values for the conditional variances all parameters need to be positive. Also, to 

ensure that the variance processes are not explosive, each βi must be less than one. Thus we have the 

following first set of restrictions: 

K,i,,,,p,K,,i,p iii
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βαω            (R1) 

R2. All individual long-term variances must exist and be finite and positive. In fact, a finite and 

positive overall long-term variance is sufficient to ensure that all individual long-term variances are 

finite and positive. This observation follows from the restrictions R1 and the following relationship 

between the individual and overall long-term variances: 

)()1)(( 22
tiiiit EE εαωβσ +=−         (6) 

 

Appendix B derives the expressions for the long-term variances and kurtosis, giving the following 

expression for the overall long-term variance in the case of a symmetric NM(K)-GARCH(1,1) model: 
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The numerator of is always finite and positive, given R1, so a (necessary and sufficient) 

additional condition for a finite positive second moment is: 
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important one of these is the Broyden-Fletcher-Goldfarb-Shanno algorithm, based on an approximating and updating method 
for the information matrix. 
8 One major problem in any type of optimisation is the search for appropriate starting values, to ensure that the optimisation 
process leads to the global optimum, instead of a local one. To overcome this problem, as suggested by Doornik (2000), an 
initial grid search is performed. However, the difficulty of optimisation increases with the number of parameters, thus with 
the number of components in the mixture.   
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It can be noticed that if the sum αi + βi < 1 for all i, then this condition is met. However, this is a 

sufficient, and not a necessary condition and the condition above is more exact. Actually it is too strict 

a condition to force αi + βi < 1 for all individual variance components. To see this, note that is 

the probability-weighted average of the individual long-term variances, which means that at least one 

of these variances is higher than . Thus there exists at least one i, 1 ≤ i ≤ K such that: 

)( 2
tE ε

)( 2
tE ε

)()()( 22
itiiiit EE σβαωσ ++<         (8) 

which can be written as: 

)(
)1( 2

it

i
ii E σ

ωβα <−−          (9) 

and it can happen that the left hand side is negative. In fact, our own empirical results in section four 

and the results of Haas, Mittnik and Paolella (2002) have shown that the α parameter of the highest 

variance component may have to take values higher than 1 in order to capture a high level for the 

individual variance when there are large values or outliers in the data. However, it should also be 

noted that theα parameter estimate could also be subject to a considerable upwards bias, and this is 

shown by our simulation results in the next section. 

 

R3. Our third and final condition refers to the existence (positivity) of the fourth moment. If one of 

the components has αi + βi >1, the fourth moment might not exist for certain values of the parameters. 

Such a region for the mixing parameter, keeping the other parameters constant, is shown in Fig. 1. 

The graph also shows that the positivity of the second moment does not ensure the existence of the 

fourth moment. The final condition is therefore: 

                          (R3) 0

                                                     

)( 4 >εE

[Fig. 1 about here] 

 

3. Simulation Results 

One of the main problems with the NM(3) and higher order GARCH models is that often at least one 

of the mixing parameters takes very low values. In this section we show that biased parameter 

estimates result for the variance component(s) having low weight in the mixture and the entire model 

will be adversely affected.9 We used Monte Carlo simulations to check the accuracy of the symmetric 

NM(2)-GARCH(1,1) model parameter estimates. The reason for choosing a NM(2) model is that it 

has only seven parameters (so the likelihood surface is better conditioned than it is for higher order 

normal mixture GARCH models) but it can still account for the excess kurtosis in the data. A 

 
9 For an empirical illustration of this phenomenon, see the NM(3) results for the Japanese yen in tables 4 and 5. 
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symmetric NM(2)-GARCH(1,1) model is sufficient to illustrate the dependency of the estimation of 

the parameters on the mixing law.  

 

The simulation has the following steps: first, the individual variance processes of the model are 

simulated together with the time series for the error term. Secondly, the parameters of this simulated 

process and their standard errors are estimated. We generated 5000 time series of length 2000 and 

hence estimated the symmetric NM(2)-GARCH(1,1) model 5000 times. We expect the histograms of 

the estimated parameters to be centred on their true values, and the standard error of the estimated 

parameters should be around the Cramér-Rao lower bound.10  

 

The estimated means and standard errors of the parameter estimates are sensitive to the values chosen 

for the model parameters, and to the value of the mixing parameter p in particular. In order to 

investigate the sensitivity to p further, the simulations and model estimations were performed 17 

times, for mixing parameter values of 0.1 up to 0.95 (with a step of 0.05) but with a fixed set for the 

other parameters.11 The individual GARCH(1,1) parameters were chosen to be close to their empirical 

estimates when the NM(2)-GARCXH(1,1) model was implemented on historical daily exchange rates 

(see section 4). The parameter values chosen for these simulations were: ω1 = 0.00001, α1 = 0.03, β1 = 

0.9, ω2 = 0.0001, α2 = 0.041, β2 = 0.96, p = 0.1, 0.15, … , 0.95. 

 

Fig. 2 summarizes our preliminary classification of estimation results into ‘good’ and ‘unrealistic’ 

estimates. It shows that, for non-extreme values of the mixing parameter, a higher percentage of the 

simulated time series lead to realistic estimates. However, the more extreme the value of p, the worse 

the estimation is – in the sense that marginal values of the parameters are obtained such as a β higher 

than 0.99 which is likely to result from a local, and not a global, optimum. 

 

[Fig. 2 about here] 

 

Collection 1 presents the estimation results for the parameters, illustrating the bias of the estimation as 

a function of the mixing parameter. In particular, ω and α have a positive bias whilst β is biased 

downwards; and the size of the bias is an inverse function of the mixing parameter associated with the 

individual density whose variance is being modelled. That is, the bias on the parameters of the first 

individual variance is higher for low values of p and the bias on the parameters of the second 

individual variance is higher for high values of p. Even the mixing parameter has a small upward bias, 

                                                      
10 The Cramér-Rao bound constitutes the main diagonal element of the inverse of the Information Matrix. These values 
represent a lower limit for the variance of certain unbiased estimators. Given the complexity of an analytical formula for the 
Cramér-Rao bound, simulations were used to find an approximation for it. 
11 p=0.05 is excluded because it does not satisfy the parameter conditions. 
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but only when it takes values close to zero. However, the overall and individual long-term volatilities 

are only very slightly biased downwards for very low values of p. The last graph shows that the 

excess kurtosis has an upward bias for extreme values of the mixing parameter.  

 

Collection 2 shows the efficiency of the estimation comparing the estimated standard errors with the 

Cramér-Rao bound. Our results show that the estimation of the volatility parameters for a component 

of the mixture becomes more exact as the mixing parameter associated with this component increases.  

Intuitively, when the mixing parameter associated with a component is high, we have many 

observations drawn from this density leading to a better precision of the estimation of the associated 

parameters. Also, we see how nicely the standard errors of the estimation match the Cramér-Rao 

bound, indicating the efficiency of the estimation.12 One good thing to conclude, comparing the two 

sets of graphs, is that in all cases the average bias is less than the standard error of the estimation. 

 

[Collections 1 and  2 about here] 

 

4. Empirical Application of the Model 

The use of a GARCH framework for exchange rate modelling is an established approach in the 

literature. Applications arguably began with Hsieh (1988), who examined the statistical properties of 

daily exchange rates and concluded that exchange rate returns have a distribution which varies over 

time (a similar result was obtained by Zhou, 1996) and rejected the hypothesis that the data has a 

heavy-tailed distribution with fixed parameters over time. In a subsequent paper, Hsieh (1989) proved 

that a GARCH model can explain a significant proportion of the observed non-linearities for five 

major exchange rates, but it cannot account for the entire leptokurtosis in the data. Similar results 

were found by Johnston and Scott (2000). Other studies using a GARCH framework to model the 

statistical properties of exchange rate rates include Baillie and Bollerslev (1989, 1991), Engle, Ito and  

Lin (1990) and Engle and Gau (1997).  

 

The empirical evidence on the leptokurtosis found in the distribution of high frequency data makes 

GARCH techniques preferable, and their superiority for modelling exchange rates in particular has 

been stressed by many authors: Mckenzie (1987), West and Cho (1994), Christoffersen (1998) to 

mention but a few. Nevertheless, other related lines of research on exchange rate behaviour include 

the use of a mixed jump diffusion – see Jorion (1988) – and, more recently, Markov switching 

models, as in Engel and Hamilton (1990) and Engel (1994). Another alternative to analyse exchange 

                                                      
12 The reason for getting standard error estimates in some cases lower than the Cramér-Rao bound is that we use restrictions 
for the parameters and also that with the initial grid search we have a better chance of finding the global and not only local 
maximum. 
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rate return variability, proposed by Andersen, Bollerslev, Diebold and Labys (2000, 2001, 2003), is to 

estimate the realized volatility directly by simply summing the intra-day squared returns.  

We are currently witnessing a debate concerning the performance of these models. The results of 

Tucker and Pond (1988) and Akgiray and Booth (1988) favour the mixed jump model. On the other 

hand, a study of Johnston and Scott (1999) concludes that none of these models consistently 

dominates the others. In a recent study, Hansen and Lunde (2001), comparing 330 GARCH models 

for volatility forecasting, cannot point out one single model that outperforms the others in the case of 

exchange rate rates, although they found that models based on leptokurtic distributions do better than 

those based on Gaussian distributions. They conclude that the best models do not provide a 

significantly better forecast than the GARCH(1,1) model, and that none of the models that they 

considered capture totally the behaviour of exchange rates: even the t-GARCH models were not able 

to fully explain the excess kurtosis in the data. A possible explanation for their results is that 

symmetric student’s densities have only three parameters, so they are not flexible enough to capture 

the heavy tails of the empirical distributions. On the other hand, normal mixture distributions have 

more parameters (for example, a mixture of just two normal densities already has five parameters), so 

they are more flexible in capturing leptokurtosis. 

 

Normal mixture distributions have been applied to unconditional exchange rate returns by many 

authors: Boothe and Glassman (1987), Zangari (1996) and Hull and White (1998) to mention but a 

few. However, the empirical literature on NM-GARCH modelling of exchange rate returns is still in 

its infancy. The study of Vlaar and Palm (1993) on weekly European exchange rates shows that their 

model is capable, in most cases, of accounting for the excess conditional kurtosis present in the data. 

Also, Bai, Russell and Tiao (2001, 2003) using intra-day data on the Deutsche mark, French franc and 

Japanese yen exchange rates, obtained significant improvements on the unconditional kurtosis 

estimates, compared to the GARCH(1,1) model. 

 

Data 

The data consists of daily prices of three foreign currencies (British pound, euro and Japanese yen) in 

terms of US dollar, covering a fourteen-year period from 2nd January 1989 to 31st December 2002 (a 

total of 3652 observations), provided by Datastream.  Daily returns are computed as the (annualised) 

difference in the logarithm of daily closing prices.13 The time evolution of the returns is presented in 

Fig. 3, and Table 1 reports some statistical properties of the data.14 From the first four moments of the 

unconditional distributions, we see that the mean returns are not significantly different from zero for 
                                                      
13 Zero returns have been removed as they most often indicate missing data and distort the likelihood surface. 
14 Based on the BIC criteria, the following AR(1) model is chosen for the daily returns on the British pound : 

1*06061.0 −+= tttr εε . Similarly, the following AR(1) model describes the EUR/USD rate: r 1*03115.0 −−= ttt εε . 
Subsequently the terms GBP and EUR will signify the residuals from these regressions.  No autoregressive effects were 
found necessary in the conditional mean dollar returns for the Japanese Yen. 
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any of the three exchange rates. The skewness is significant for the GBP and JPY rates, while the 

significance of the excess kurtosis for all three currencies is high, especially for the Japanese yen. 

Also, the Ljung-Box statistic shows that the data provide no evidence of autocorrelation. 

 

[Fig. 3 and Table 1 about here] 

 

Since the focus of this section is to estimate the parameters of symmetric NM(K)- GARCH(1,1) 

models, for different values of K, and to test the moment specifications of these models, and since 

these models are designed to capture, specifically, the time-variation in the second and fourth 

moments of conditional distributions of returns, we need to test for the existence of these moments in 

the sample data used. We therefore compute the maximal moment exponent 

{ }∞<>= b
tEba ||:0sup ε , as in Hill (1975). Let 
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where s is a positive integer and ε1 ≤ … ≤ εn are the ordered returns. Hall (1982) showed that if n is 

large enough, s=s(n) is a function of n of a pre-specified order, s/n small enough and the tails of the 

distribution have the asymptotic Pareto-Lévy form then )ˆ( aas s −  has an approximate normal 

distribution with standard deviation a. Table 2 presents the estimates for the maximal moment 

exponent and the test results for the existence of the fourth moment. According to the results, we 

cannot reject the existence of the fourth moment. 

 

[Table 2 about here] 

Results 

Three symmetric NM(K)-GARCH(1,1) models, for K = 1, 2 and 3 respectively, are estimated for each 

of the three exchange rate series, using the whole fourteen years of data.15 Of course, the NM(1)-

GARCH(1,1)  model is equivalent to the normal GARCH(1,1). In the second and third model, the 

error term follows a mixture of two and three normal densities with GARCH(1,1) conditional variance 

equations, respectively. Though useful for estimating models with many parameters – and the NM(3)-

GARCH(1,1) has eleven – many GARCH empiricists would consider fourteen years too long a 

sample to obtain meaningful parameter estimates from the GARCH estimation. Therefore, in addition 

to the entire period under study each model is estimated on three sub-periods: the first four years (2nd 

Jan 1989 – 31st Dec 1992), the middle five years (2nd Jan 1993 – 31st Dec 1997) and the last five years 

of the sample (2nd Jan 1998 – 31st Dec 2002).  

                                                      
15 Asymmetric and Exponential normal GARCH(1,1) models have also been fitted to the data but they provided no 
significant improvement related to the basic GARCH(1,1) model. 

Copyright © 2003 Carol Alexander and Emese Lazar. 11



ISMA Centre Discussion Papers in Finance DP2003-09 

 

This split of the sample could also be useful for checking the robustness of our parameter estimates. 

However, from both Fig. 3 and Table 6 we see that, although the three sub-periods were simply 

chosen to be of roughly equal length, they do have quite different characteristics. For the British 

pound, the first sub-period is characterized by an average volatility of 11.8% and an excess kurtosis of 

1.58, the second sub-period is more stable, with a lower average volatility of 8.4%, but has a higher 

excess kurtosis, of 2.86, and the last sub-period has a very low average volatility, only 7.2%, and the 

excess kurtosis decreases to 1.12. Similarly, in the case of the euro, the first period is the most 

volatile, and the excess kurtosis, probably due to the outliers, is highest for the second period, having 

a value of 3.8. The last period is characterized by a very low excess kurtosis of only 1.23. For the 

Japanese yen, the last period is the most volatile and also has an exceptionally high excess kurtosis, of 

8.91. Given the different characteristics of each of the sub-periods, we do not expect the model 

parameter estimates to be nearly identical in all three periods. 

 

Tables 3, 4 and 5 present the estimation results for the three exchange rates for the entire period and 

the three sub-periods. Twelve samples are considered (three exchange rates, each having four 

different sample periods) and three models are estimated for each sample. Standard errors are 

computed as the square root of the diagonal elements of the information matrix (see Appendix A for 

its derivation).  

[Tables 3, 4 and 5 about here] 

 

When fitting the NM(2) model, the components of the mixture distributions can easily be 

differentiated: for eleven out of the twelve samples, the lower long-term volatility component has the 

higher value for the mixing parameter. Thus the model is able to quantify two regimes in exchange 

rate volatility, a ‘normal market circumstance’ (long-term) volatility which occurs most of the time, 

and an ‘extreme market circumstance’ (long-term) volatility which occurs rarely, but which is higher 

than the normal one. The estimated weights in the mixing law may be interpreted as the frequencies 

with which these two states occurred during the sample period.  

 

Note that our simulation results indicate that the parameter estimates are likely to be biased, or indeed 

convergence problems may be encountered in their estimation, if one of the regimes occurs with very 

low frequency. However, for the EUR and JPY rates, all estimates of the mixing law parameters are 

far from the boundary, so the parameters in the variance equations are estimated without bias. Also 

for the GBP rate, the mixing parameters are almost always higher than 0.3, so again no significant 

biases are expected in the estimation. The only exception is the 1993-1997 period, when the estimated 

mixing law is [0.88, 0.12] so that our estimate of 0.732 for α2 is upwards biased and our estimate of 
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zero for β2 is downwards biased. Obviously, the downwards bias on the estimate of β2 is very 

substantial in this case. 

As expected a high value for the unconditional kurtosis is associated with a high value for the extreme 

long-term volatility and/or a low probability for this extreme. For instance, the JPY rate has the 

highest long-term individual volatilities and these extreme volatilities are associated with very low 

probabilities, leading to a high model excess kurtosis, especially during the last two sub-periods. 

 

When fitting a NM(3) model for the GBP and EUR rates, the component with the highest mixing 

parameter has an average long-term volatility, and the other two components (with lower and higher  

long-term volatilities) each have a smaller mixing parameter.16 In this case the model is capturing two 

‘exceptional circumstances’ in volatility – one corresponding to unusually tranquil markets, and the 

other corresponding to unusually volatile markets. In the case of the GBP rate, the 1993-1997 and 

1998-2002 periods have a very low value for the third mixing parameter (0.05 and 0.02, respectively) 

and this could be the reason why, for these periods, our estimates of α3 are greater than one and our 

estimate of β3 is very low. For the EUR rate, all parameter estimates seem to be reasonable although 

the moment specification tests for the 1989-1992 and 1998-2002 periods – discussed in detail below – 

reveal that probably a local and not the global maximum has been reached.  

 

The JPY rate has the peculiarity that the highest probability is associated with the component with the 

lowest long-term volatility and the component with highest long-term volatility has the smallest 

mixing parameter. However, from Table 4 we see that the estimation of the third volatility component 

for the Japanese yen is highly problematic and unrealistic parameter estimates were obtained.  

 

To decide which model has the best in-sample fit, we have first applied the usual model selection 

criteria, namely the Akaike Information Criterion (AIC) and Schwartz’s Bayesian Information 

Criterion (BIC) and the results are reported in the lower rows of Tables 3, 4 and 5. Schwarz’s criteria 

always prefers the NM(2) specification, whilst the AIC is oscillating between the NM(2) and NM(3) 

models. In no case, for any exchange rate, and over any sub-period, is the normal GARCH(1,1) model 

the preferred specification, according to any of these criteria. 

 

To check the adequacy of each model to capture the higher moments of the conditional returns 

densities, Tables 3, 4 and 5 also report the results of moment specification tests. In order to test 

whether the moments of the error densities match the ones specified by the estimated normal mixture 

distribution, the errors must be transformed into a series that has a standard normal distribution under 

                                                      
16 For the first and last sub-period in the case of the EUR rate and for the third sub-period for the JPY rate, for the NM(3) 
model the results suggest that only local optimum was achieved. We consider that this is due to the irregularities of the 
likelihood surface and to the low number of observations, less than 1000 when estimating a high number of parameters (11). 
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the null hypothesis that the NM(K) model is valid. Thus for each realization of the error term εt, the 

cumulative normal mixture distribution is computed: 

∑
=
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K

k
tkktt pP

1

)()( εε         (11) 

where K is the number of normal densities in the mixture, and Φk is the cumulative normal 

distribution function of the kth element of the mixture. Under the null hypothesis, Pt will be 

independently and uniformly distributed and then the inverse cumulative standard normal distribution 

of Pt gives a series ut = Φ−1( Pt) which should be i.i.d. standard normally distributed. Following 

Harvey and Siddique (1999), this is verified by checking its moments for the following conditions: 
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Since the transformed errors should not exhibit any autocorrelation in the squares or fourth powers, 

we also should have that: 
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A cumulative test is also carried out that the all of the conditions for the even powers of the error term 

mentioned above are jointly true. Following Newey (1985), Engle, Lilien and Robins (1987), Nelson 

(1991), Greene (2000) and Brooks, Burke and Persand (2002), a Wald test approach is used and the 

derivation of the test statistic is given in Appendix C. 

 

The above conditions test whether the estimated model’s first four moments match the empirical ones 

– note that we are not modelling skewness – and whether there is any first order autocorrelation in 

these moments.17 Our results show that the GARCH(1,1) model has severe rejections of model 

appropriateness, especially when testing the fourth moment.  In a few isolated cases, the NM(2) 

model also rejects the 4th moment tests, showing that this model cannot always account for the excess 

kurtosis present in the data. Still, it gives a major improvement on the normal GARCH model. The 

NM(3) model can account for almost all excess kurtosis in the data, since the residuals show no clear-

cut evidence of non-normality, but this is at the expense of the estimation problems discussed above. 

The NM(3) model has eleven parameters to be estimated by maximizing a highly non-linear 

likelihood function, and we have seen, both from our simulations and from our empirical results, that 

                                                      
17 Moment tests for higher order of autocorrelation were also performed generally leading to non-rejection of normality. 
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this can lead to a substantial bias in the estimated parameters. It should also be noted that too good a 

fit is not always desirable because it might indicate noise-fitting, and poor out-of-sample performance.  

 

Finally, we consider the relative properties of the three models when estimated over the entire 

fourteen year sample period, comparing the conditional volatility and excess kurtosis amongst the 

three models, and comparing the long-term excess kurtosis from each of the three models with that 

computed directly from the data. In making this last comparison, note that differences can arise from 

three sources: First, the mixing parameters could be close to boundary values, leading to biased 

parameter estimates, as shown by the simulation results; Secondly, just a few outliers can artificially 

influence the estimates (and this is the case in all GARCH models); Thirdly, when the unconditional 

parameters are estimated directly from the data we compute ‘average’ volatility and excess kurtosis 

within the sample, but when estimated via a normal mixture GARCH model, we are estimating long-

term parameter values, being steady state limits of the conditional volatility and excess kurtosis series.  

 

Collection 3 presents the conditional volatility and conditional excess kurtosis series derived from the 

estimated NM(2)- and NM(3)-GARCH(1,1) for the three exchange rates. These have a strong time-

varying pattern, but the two volatility series shown on each graph are similar, for all three exchange 

rates.18 The excess kurtosis graphs derived from the NM(2) and NM(3) models are more different: 

they do display a similar shape for the GBP and EUR rates (as expected, the excess kurtosis often 

increases at times when the conditional volatility decreases) but the NM(3) excess kurtosis is both 

higher and more volatile than the NM(2) excess kurtosis, particularly for the EUR rate. In the case of 

the JPY rate, the conditional excess kurtosis series from the NM(3) model is totally useless, probably 

due to the bias generated by the very low third mixing parameter.19  

 

Table 6 presents the unconditional ‘realised’ excess kurtosis and the long-term excess kurtosis derived 

from each of the three models, estimated over the whole sample period and sub-periods.20  Clearly the 

GARCH(1,1) model is not able to capture the full extent of the leptokurtosis in the data. The NM(2)-

GARCH(1,1) model is closest to the realized excess kurtosis in 11 of the 12 cases and the NM(3)-

GARCH(1,1) model greatly overestimates the excess kurtosis in the data.  

 

[Collection 3 and Table 6 about here] 

 

                                                      
18 They are also similar to the NM(1)-GARCH(1,1) conditional volatility series, although this series has not been shown. 
19 Note that the conditional kurtosis for the NM(1)-GARCH(1,1) model is zero. 
20 The unconditional realized excess kurtosis is computed as ( )
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6. Summary and Conclusions  

This paper has examined the properties of the symmetric GARCH(1,1) model where the error term 

follows a normal mixture distribution, thus integrating the two major approaches in volatility 

modelling in a unified framework. Our contributions may be summarized as follows: 

 
1. The analytic framework for the estimation of symmetric NM(K)-GARCH(1,1) models has 

been developed: we have derived expressions for the derivatives of the likelihood function, 

derived the moments of the error term and set specific parameter conditions for finite positive 

second and fourth moments; 

2. Simulations have been used to examine the efficiency of parameter estimates, and to indicate 

the direction and size of the potential bias in the estimation, as a function of the mixing law; 

3. Symmetric NM(K)-GARCH(1,1) models have been estimated using daily data for major US 

dollar exchange rates, over several different time periods. Information criteria and moment 

based specification tests on these models, long-term kurtosis estimates and observations on 

our simulation results lead us to conclude that the mixture of two normlas model is the 

preferred specification for all these series.  

 

The analytic framework (detailed Appendix A) improves the efficiency of estimation algorithms and 

the specific conditions we set allow α + β > 1 for some components. Simulations indicate potential 

convergence problems and a possible bias on parameter estimates for the variance components having 

low weights in the mixture. Our empirical results have a natural and appealing interpretation: for each 

of the data series, the estimated parameters of the conditional variance equations can easily be 

distinguished. In particular, in almost all cases the component with the lower volatility in the NM(2) 

model has the higher value for the mixing parameter. Thus the model is able to quantify two 

components in exchange rate volatility, a ‘normal market circumstances’ volatility process which 

occurs most of the time, and an ‘extreme market circumstance’ volatility process which occurs only 

rarely. When fitting a NM(3) model to the exchange rates, the component with the highest mixing 

parameter has an average long-term volatility. In this case the model quantifies two ‘exceptional’ 

market circumstances, i.e. relatively tranquil, and relatively volatile markets.  However, the NM(3) 

model has 11 parameters, and this leads to estimation problems, the most severe of which is the bias 

on parameters of the ‘high’ and ‘low’ volatility regimes that occur only rarely. Based on all our 

results, we conclude that the NM(2)-GARCH(1,1) model is preferred.  

 

Among the possible extensions of the model, the different types of asymmetric parameterisations 

would be of interest, as well as the multivariate case. Potential uses of the model include the use of the 

analytic term structure forecasts for the excess kurtosis and its application to option pricing and 

hedging models hypothesizing that the risk neutral density is a normal mixture.  
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Appendix A. Estimation with Analytical Derivatives of the NM(K)-GARCH(1,1) Model 

The specification of the model comprises K + 1 equations: the first one for the conditional mean and the next K 

for the variance behaviour. The conditional mean equation of the model is tty ε= . For simplicity it contains no 

explanatory variables (these can be estimated separately). There are K conditional variance equations: 
2

1
2

1
2

−− ++= ititiiit σβεαωσ   i = 1,…, K 

The error term tε is assumed to have a conditional normal mixture density with zero mean, which is a 

probability weighted average of K zero-mean normal density functions: 
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where the density of the error term is represented by the following mixing law ( iφ ,i = 1,…, K represent zero-

mean normal density functions): 

∑
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i
tiit p

1

)()( εφεη  

Since the sum of the mixing law weights is one, it is only necessary to use (K-1) parameters for the probabilities. 

We use the following notation for the parameters:  

)',( 11 −= Kpp Kp , )',,( iii βαω=iγ     i = 1,…, K 
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Maximizing the likelihood, or equivalently, maximizing [ ] )2ln(
2
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T  gives the optimal parameter 

values, given the data (   ).,...,1 Tyy

 

To ease the analysis, in the following let gi denote
2

2

2
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1
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i
σ
ε

σ

−

M )(θ

, i = 1,…, K. It can be easily seen that gi is a 

function of pi and γi only, for i = 1,…, K – 1 and gK  is a function of p and γK. Also, we denote ln  by 

m


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K
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ig
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t(θ). Using the new notation, our objective is to maximize . The Newton-Raphson procedure 

is used to obtain the optimal parameters. The non-negativity of variance and the positivity of the fourth moment 

are assured by imposing the restrictions R1, R2, and R3 derived in Section 2.  

∑
=

=
T

t
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1

)(θ

 

One major problem in any type of optimisation is the search for appropriate starting values, to ensure that the 

optimisation process leads to the global optimum, instead of a local one. To overcome this problem, as 

suggested by Doornik (2000), an initial grid search is performed. However, the difficulty of optimisation 

increases with the number of parameters, thus with the number of components in the mixture.  
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The updating formula has the following form, where g is the gradient vector, H the Hessian matrix and s 

represents the step-length: 

)()]([ )(1)()()1( mmmm s θgθHθθ −+ −=  

To compute the Hessian matrix and the gradient, we need to compute the first and second order derivatives of 

mt(θ) with respect to θ. The first order derivatives are: 
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From (3) and (4) we obtain the following result: 
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The second order derivatives are: 
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To compute the partial derivatives on the right hand side of (7), we use (2) to derive the following expression: 

'

2

1

11 ln
' 








∂

∂












































−

=
∂





















∂

∑

∑∑

=

==

ii γγ
i

K

k
k

i

K

k
ki

K

k
k

i

g

g

gggg

g

,  

which, using (4), simplifies to: 
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Using equation (4) again we obtain that: 
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Combining and grouping (4), (7), (8) and (9) we obtain: 
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Using (5), we compute the cross-derivatives as: 
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Combining (11) and (12) we obtain: 
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Again using (5), we can write the cross-derivative with respect to γi and γj as: 
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Using (2) and (4) the above implies: 
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The first and second order derivatives of with respect to γ still need to be computed: 2
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The second order derivative is: 
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Appendix B. Derivation of the Moments of the Error Term  

The model is specified as: 
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So (10) may be written in matrix form as: 
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In the case of a mixture of two normal densities, equations (6) and (12) become: 
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Appendix C. Moment Specification Tests 

The specifications of the model present an error term that has a normal mixture conditional distribution. Given θ 

the k-dimensional vector of parameters, θ  the parameter estimates and  the standardized residuals, the 

estimated vector of restrictions, can be written as: 
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This is a J-dimensional vector, where J represents the number of restrictions to be tested. For example, when 
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Let D be the first derivatives matrix of the realizations of the log-likelihood function with respect to the 

parameters, evaluated at the estimated values: 
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The null hypothesis is that the restrictions are zero: 

H0: r(θ) = 0 

Let Ω̂  denote the variance-covariance matrix of r . The test statistic is: )ˆ(θ

 , which has a distribution under the null. )ˆ(ˆ)ˆ( 1 θrΩθr −= TW 2
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Fig. 1. The long-term volatility, the fourth moment and the excess kurtosis as a function of the first 
mixing parameter for the NM(2)-GARCH(1,1) model  having the parameters 
ω1 = 0.00001, α1 = 0.03, β1 = 0.9, ω2 = 0.0001, α2 = 0.041, β2 = 0.96.  
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Fig. 2. Classification of Estimation Results 
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Fig. 3. The returns on the three exchange rates 

(a) GBP/USD (b) EUR/USD
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Collection 1.  The estimation bias as the difference between the simulated and average estimated 

values of the parameters, long-term volatilities and excess kurtosis 

(a) ω 1 (b) ω 2 
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(continuation of Collection 1.) 

(g) p (h) long-term volatility

(i) long-term volatility 1 (j) long-term volatility 2

                                     (k) excess kurtosis
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Collection 2. The efficiency of the estimation - a comparison of the Cramér-Rao bounds (where 

available) and the standard errors of the parameters, long-term volatilities and excess kurtosis 

(a) ω 1 (b) ω 2 

(c) α 1 (d) α 2 

(e) β1 (f) β2 
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(continuation of Collection 2.) 

 

(g) p (h) long-term volatility

(i) long-term volatility 1 (j) long-term volatility 2

                               (k) excess kurtosis
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Collection 3. NM(2)- and NM(3)-GARCH(1,1) conditional volatilities and excess kurtosis’s for the 

three exchange rates. 

(a) Conditional volatility for GBP (b) Conditional excess kurtosis for GBP

(c) Conditional volatility for EUR (d) Conditional excess kurtosis for EUR

(e) Conditional volatility for JPY (f) Conditional excess kurtosis for JPY
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Table 1. Statistical description of the data  

Returns on exchange rate GBP EUR JPY 

Mean return -0.0005 -0.0005 0.0002 

Standard deviation 0.0912 0.1035 0.1179 

Skewness -0.1533*** 0.0256 0.7711*** 

Excess kurtosis 2.7285*** 2.4232*** 7.0853*** 

Minimum -0.5089 -0.5885 -0.6536 

Maximum 0.4535 0.6652 1.2139 

Ljung-Box statistic (4 lags) 2.5708 3.5032 1.1121 

     Note:  The standard errors for the skewness and kurtosis are approximated by T/6 for the skewness and by 

T/24 for the excess kurtosis, where T represents the total number of observations. 
 *, ** and *** represent results significantly different from zero at the 5%,  1%  and 0.1% level, respectively 
  
 

 

Table 2. Estimates of the maximal moment exponent and tests for the existence of the fourth moment 
Exchange Rate GBP EUR JPY 

sâ  3.83 4.45 3.34 Right tail 

4th moment test -0.37 1.02 -1.5 

sâ  3.17 3.69 3.76 

s =5% 

Left tail 

4th moment test -1.93 -0.73 -0.57 

sâ  5.52 5.85 4.24 Right tail 

4th moment test 1.62 1.91 0.25 

sâ  5.37 4.23 3.94 

s =1% 

Left tail 

4th moment test 1.45 0.24 -0.06 
Note: is defined as the percentage of number of the observations in the right (left) tail.  s
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Table 3. Estimation results for different NM-GARCH(1,1)  models, the GBP/USD exchange rate for different periods of time 
Period 2nd Jan 1989 – 31st Dec 2002 2nd Jan 1989 – 31st Dec 1992 2nd Jan 1993 – 31st Dec 1997 2nd Jan 1998 – 31st Dec 2002 

Model             NM(1) NM(2) NM(3) NM(1) NM(2) NM(3) NM(1) NM(2) NM(3) NM(1) NM(2) NM(3)

p1 1          0.6603*** 0.6031*** 1 0.4919*** 0.3990** 1 0.8801*** 0.5910** 1 0.7060*** 0.8460***

ω1 7.0E-5***            9.5E-06 1.36E-5 0.0005** 0.0001 0.0007 0.0001*** 8.8E-08 0.00001 0.0001** 8.3E-06 0.00004

α1 0.0442***            0.0290*** 0.0261*** 0.0756*** 0.0509** 0.1170* 0.0384*** 0.0266*** 0.0286 0.0271** 0.0199** 0.0195**

β1 0.9472***            0.9441*** 0.9724*** 0.8926*** 0.8578*** 0.908*** 0.9513*** 0.9622*** 0.9700 0.9466*** 0.9677*** 0.9735***

p2 -          0.3397*** 0.2929*** - 0.5081*** 0.3380** - 0.1199*** 0.3460 - 0.2940*** 0.1315**

ω2 -         0.0002* 1.26E-06 - 0.0007* 1E-10 - 0.0171 1E-10 - 0.0009 1E-10

α2 -          0.0789** 0.0486*** - 0.0966** 0.0611** - 0.7320 0.0733** - 0.0621 0.0221*

β2 -          0.9462*** 0.8579*** - 0.9069*** 0.841*** - 1E-10 0.8190*** - 0.8675*** 0.8380

p3 -        - 0.1041*** - - 0.2630** - - 0.0630 - - 0.0225* 

ω 3 -            - 0.0008 - - 0.0007 - - 0.0190 - - 0.0002

α3 -          - 0.2253* - - 0.0275 - - 1.5850 - - 2.7100

β3 -           - 0.8858*** - - 0.873*** - - 3.1E-07 - - 0.5020

Long-term σ1 9.06%            6.71% 9.07% 12.05% 7.62% 15.98% 8.02% 7.03% 8.72% 7.22% 5.89% 7.72%

Long-term σ2 -            12.57% 5.30% - 15.13% 7.43% - 14.90% 5.51% - 9.68% 2.83%

Long-term σ3 -        - 15.20% - - 9.39% - - 17.57% - - 18.00%

AIC -2.10557       -2.15061 -2.15485 -1.51442 -1.55244 -1.54635 -2.24212 -2.31629 -2.32205 -2.42921 -2.44790 -2.45019 

BIC -2.09862 -2.13843 -2.13572      -1.49468 -1.51789 -1.49206 -2.22594 -2.28798 -2.27756 -2.41315 -2.41978 -2.40600 

Moment specification tests:          

1st moment 1.803           0.574 0.561 13.073*** 0.573 0.555 0.299 0.095 0.108 2.089 0.004 0.005

2nd moment 0.967            0.034 1.726 0.764 0.004 0.713 3.016 0.061 0.840 0.010 0.321 0.355

3rd moment 0.147            0.418 0.369 6.092* 0.803 0.803 1.502 0.090 0.067 6.231* 3.479 2.658

4th moment 44.056***            7.133** 0.077 20.343*** 0.008 3.444 22.202*** 8.522** 0.347 6.303* 3.069 0.867

1st moment AC(1) 0.002            0.204 0.226 1.269 0.741 0.732 2.395 3.316 3.365 0.001 0.012 0.001

2ndmoment AC(1) 0.609            1.040 0.465 0.001 0.041 0.018 2.344 2.388 1.141 1.197 1.739 2.655

3rd moment AC(1) 5.457*            4.627* 4.051* 3.932* 4.133* 4.153* 0.004 0.047 0.026 0.877 0.636 0.447

4th moment AC(1) 0.902            0.217 0.306 0.447 0.564 0.395 1.332 1.645 1.688 5.231* 4.338* 5.908*

Cumulative test 46.240***             12.665* 7.502 20.784*** 1.525 5.790 32.052*** 25.886*** 14.748** 10.904* 10.882* 8.019
Notes: NM(1), NM(2) and NM(3) represent GARCH(1,1) models with a mixture of 1, 2 and 3  normal densities, respectively. For AIC and BIC, numbers in bold signify chosen models. The cumulative test is 
 a joint test that the moment and AC conditions for the 2nd and 4th moments are met. Test statistics for the  moment tests have a χ2(1) distribution and for the cumulative test have a χ2(4) distribution. 

*, ** and *** signify significance at 5%, 1% and 0.1% significance level, respectively. 
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Table 4.Estimation results for different NM-GARCH(1,1)  models, the EURO/USD exchange rate for different periods of time 
Period 2nd Jan 1989 – 31st Dec 2002 2nd Jan 1989 – 31st Dec 1992 2nd Jan 1993 – 31st Dec 1997 2nd Jan 1998 – 31st Dec 2002 

Model        NM(1) NM(2) NM(3) NM(1) NM(2) NM(3) NM(1) NM(2) NM(3) NM(1) NM(2) NM(3)

p1 1       0.7299*** 0.5637*** 1 0.7465*** 0.4520 1 0.7567*** 0.5560*** 1 0.6022** 0.7200***

ω1 0.00015***            0.00005 0.00017 0.0009** 0.00019 0.00086 0.0001*** 0.00012 1E-10 0.00017** 0.00008 0.00015

α1 0.0475***            0.0254*** 0.0441* 0.0908*** 0.0300* 0.0639 0.0389*** 0.0398*** 0.0540** 0.0332*** 0.0206* 0.0384**

β1 0.9392***            0.9501*** 0.9509*** 0.8517*** 0.9301*** 0.8770 0.9492*** 0.9033*** 0.9080*** 0.9492*** 0.9474*** 0.9490***

p2 -       0.2701*** 0.4033*** - 0.2535*** 0.2690 - 0.2433*** 0.2880** - 0.3978** 0.2190

ω2 -       0.0005 0.00003 - 0.0028 1E-10 - 0.0002 0.0010 - 0.00029 0.00012

α2 -      0.1132** 0.0234** - 0.2743 0.0174 - 0.0810* 0.0000 - 0.0451 0.0076

β2 -      0.9232*** 0.9366*** - 0.7857*** 0.9460 - 0.9563*** 0.8500 - 0.9555*** 0.9300***

p3 -           - 0.0330** - - 0.0890 - - 0.1560* - - 0.0610

ω3 -          - 0.00094 - - 0.0029 - - 0.00008 - - 0.00011

α3 -           - 0.3959 - - 0.5140 - - 0.1160* - - 1E-10

β3 -            - 0.8999*** - - 0.7830 - - 0.9570*** - - 0.9970***

Long-term σ1 10.60%            8.11% 11.59% 12.46% 9.66% 12.21% 9.24% 6.99% 7.17% 9.93% 7.36% 10.47%

Long-term σ2 -            15.29% 6.73% - 18.12% 7.03% - 14.47% 8.16% - 12.82% 5.34%

Long-term σ3 -         - 23.15% - - 22.27% - - 15.96% - - 18.80%

AIC -1.77315      -1.81420 -1.81578 -1.41795 -1.45048 -1.44634 -2.01648 -2.07602 -2.07244 -1.81669 -1.83564 -1.83418 

BIC -1.76610 -1.80185 -1.79637      -1.39796 -1.41548 -1.39135 -1.99996 -2.04710 -2.02700 -1.80051 -1.80732 -1.78968 

Moment specification tests:          

1st moment 0.135            0.0005 0 3.667 0.197 0.175 0.907 0.011 0.010 1.529 0.023 0.051

2nd moment 0.797            0.007 3.337 0.256 1.455 9.037** 2.217 0.062 0.514 2.354 2.638 113***

3rd moment 3.989*           3.461 3.656 3.290 0.182 0.123 5.764* 2.741 2.336 14.285*** 9.577** 6.675**

4th moment 26.992***            9.425*** 4.619* 10.913*** 1.466 5.334* 10.272** 4.017* 2.009 8.249** 1.640 209***

1st moment AC(1) 0.853            0.482 0.441 0.128 0.116 0.089 0.192 1.168 1.282 2.590 2.781 2.952

2ndmoment AC(1) 0.515            0.721 0.339 0.604 0.305 0.322 0.013 0.077 0.037 3.957* 3.215 3.530

3rdmoment AC(1) 1.308            3.089 2.271 0.159 0.228 0.125 4.276* 4.354* 4.441* 0.879 1.288 1.533

4th moment AC(1) 2.346           1.895 0.496 2.953 1.298 1.090 0.493 0.174 0.108 11.615*** 9.547** 7.401**

Cumulative test 30.129***            13.62** 11.689* 14.902** 6.636 16.532*** 14.828** 5.104 3.633 16.739** 14.472** 225.3***
Notes: NM(1), NM(2) and NM(3) represent GARCH(1,1) models with a mixture of 1, 2 and 3  normal densities, respectively. For AIC and BIC, numbers in bold signify chosen models. The cumulative test is 
 a joint test that the moment and AC conditions for the 2nd and 4th moments are met. Test statistics for the moment tests have a χ2(1) distribution and for the cumulative test have a χ2(4) distribution. 

*, ** and *** signify significance at 5%, 1% and 0.1% significance level, respectively. 
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Table 5.Estimation results for different NM-GARCH(1,1)  models, the JPY/USD exchange rate for different periods of time 
Period 2nd Jan 1989 – 31st Dec 2002 2nd Jan 1989 – 31st Dec 1992 2nd Jan 1993 – 31st Dec 1997 2nd Jan 1998 – 31st Dec 2002 

Model             NM(1) NM(2) NM(3) NM(1) NM(2) NM(3) NM(1) NM(2) NM(3) NM(1) NM(2) NM(3)

p1 1          0.8734*** 0.7330*** 1 0.7494*** 0.674*** 1 0.8838*** 0.5340*** 1 0.8700*** 0.7790***

ω1 0.0002***            0.00017** 0.00014* 0.00094** 1E-10 1E-10 0.0003*** 0.00045* 0.0011 0.0001** 0.00015* 0.00014*

α1 0.0389***            0.0270*** 0.0289*** 0.0710*** 0.0427** 0.041*** 0.0388*** 0.0334** 0.0606* 0.0305*** 0.0150** 0.0157*

β1 0.9444***            0.9361*** 0.9270*** 0.8467*** 0.9280*** 0.926*** 0.9427*** 0.8815*** 0.6080** 0.9634*** 0.9600*** 0.9570***

p2 -          0.1266*** 0.2480*** - 0.2506*** 0.268*** - 0.1162*** 0.4360*** - 0.1300*** 0.1610*

ω2 -         0.00049 0.00018* - 0.00056 0.0044 - 0.0013 0.0002 - 1E-10 1E-10

α2 -          0.1139 0.0277** - 0.0189 0.1410 - 0.2405 0.0319* - 0.1080 0.0255*

β2 -          0.9600*** 0.9780*** - 0.9693*** 0.663*** - 0.9281*** 0.9620*** - 0.9687*** 0.9880***

p2 -            - 0.0190** - - 0.058*** - - 0.0300*** - - 0.0600

ω3 -            - 0.0530 - - 0.0003 - - 0.0909 - - 0.0173*

α3 -            - 4.0100 - - 0.0500 - - 3.2134 - - 1.7510*

β3 -            - 1E-10 - - 0.978*** - - 0.0385 - - 0.0112

Long-term σ1 11.93%            9.37% 8.54% 10.69% 8.24% 7.95% 12.29% 9.01% 7.11% 12.52% 9.58% 8.90%

Long-term σ2 -            23.11% 16.02% - 15.90% 13.36% - 26.45% 13.29% - 22.33% 16.67%

Long-term σ3 -        - 32.90% - - 19.85% - - 37.91% - - 20.16%

AIC -1.51958       -1.61830 -1.62233 -1.67244 -1.73789 -1.73183 -1.49622 -1.65267 -1.66309 -1.41679 -1.48825 -1.49061 

BIC -1.51247 -1.60586 -1.60278      -1.65238 -1.70278 -1.67666 -1.47961 -1.62360 -1.61741 -1.40044 -1.45963 -1.44563 

Moment specification tests:          

1st moment 3.486            0.556 0.586 0.040 0.037 0.057 4.910 0.387 0.309 1.097 0.312 0.305

2nd moment 6.669**           5.917* 0.302 0.002 2.029 0.366 2.725 23.057*** 0.967 0.196 3.157 7.339**

3rd moment 20.014*** 6.343*           4.109* 6.563* 2.769 2.737 14.890*** 3.659 2.422 9.631** 0.288 0.055

4th moment 30.900***            11.448*** 0.896 18.961*** 0.320 4.588* 27.620*** 9.588** 3.190 29.545*** 1.074 1.790

1st moment AC(1) 0.199            0.358 0.375 0.430 0.282 0.307 1.452 1.623 1.688 0.012 0.060 0.081

2ndmoment AC(1) 1.720            0.248 0.107 1.604 0.010 1.572 0.908 0.557 0.131 3.229 0.042 6.548*

3rd moment AC(1) 0.968            0.157 0.183 0.006 1.186 1.020 1.076 0.351 0.017 6.793** 3.311 0.416

4th moment AC(1) 1.304           1.470 0.000 1.703 0.872 3.757 3.551 0.319 1.146 6.834*** 10.584*** 0.119

Cumulative test 39.392***            17.38** 1.754 22.543*** 4.599 7.100 33.788*** 26.772*** 5.688 38.040*** 35.015*** 33.700***
Notes: NM(1), NM(2) and NM(3) represent GARCH(1,1) models with a mixture of 1, 2 and 3  normal densities, respectively. For AIC and BIC, numbers in bold signify chosen models. The cumulative test is 
 a joint test that the moment and AC conditions for the 2nd and 4th moments are met. Test statistics for the moment tests have a χ2(1) distribution and for the cumulative test have a χ2(4) distribution. 

*, ** and *** signify significance at 5%, 1% and 0.1% significance level, respectively.
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Table 6.The realized and the modelled kurtosis for the three exchange rates for different periods 

Long-term excess kurtosis Exchange 

rate 

Period Realized 
excess 

kurtosis NM(1) NM(2) NM(3) 

1989-2002 2.73 0.89 3.59 4.33 

1989-1992 1.58 0.67 2.28 2.78 

1993-1997 2.86 0.50 3.50 10.14 

GBP 

1998-2002 1.12 0.09 0.96 28.76 

1989-2002 2.42 0.61 2.82 4.75 

1989-1992 1.89 0.52 2.96 4.54 

1993-1997 3.80 0.44 3.58 4.74 

EUR 

1998-2002 1.23 0.20 1.22 1.59 

1989-2002 7.08 0.30 5.34 NA 

1989-1992 1.92 0.21 1.77 2.30 

1993-1997 6.79 0.27 10.46 NA 

JPY 

1998-2002 8.91 0.54 5.28 8.47 

Note: Numbers in bold represent values that are closest to the realized excess kurtosis. 
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