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1. INTRODUCTION

In the context of the classical models for valuing options (Black and
Scholes, 1973; Merton, 1973a) the derivative is redundant since it can be replicated
using other existing assets (i.e. the underlying and the risk-free bond). These
market models are complete so that there is only one risk neutral measure and
consequently only one fair price of the derivative. The disadvantage of these
models is the assumption that the returns are normally distributed. To account for
the high kurtosis of the empirical distribution of returns, several models based on
Levy processes with jumps were developed. But in these cases the market models
are not complete and the risk neutral measure is not unique. Therefore it is difficult
to compute the fair price of the derivative. A solution of this problem is to evaluate
the derivative in the context of a general equilibrium model taking explicitly into
account the risk premium.

In this paper we develop a framework for asset pricing in the context of the
general equilibrium model in Necula (2008). We analyze a benchmark
specification of this model consisting of constant growth rates and volatilities for
the output and the money supply, and of log-normal amplitude of the jumps. Using
this specification we deduce the fundamental evaluation equations for financial
assets, the dynamics of the real and of the nominal exchange rates and a new
formula for evaluating exchange rate options.

This paper is organized as follows: in the second section we present the
hypotheses of the benchmark model and we obtain the probability distribution of
the nominal exchange rate. In the third section we focus on the fundamental
evaluation equations for different types of assets. In the forth section we deal with
the particular case of currency derivatives and obtain a new formula for pricing
exchange rate options. The final section concludes.

2. THE MODEL

We consider a benchmark economy build upon the framework developed
in Necula (2008). The two goods utility function is separable consisting of the sum
of two CRRA one good utility functions with different risk aversion parameters:
¢
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The growth rate and the volatility of the output are constant:
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where the jumps amplitude is log-normally distributed:
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The growth rate and the volatility of the money supply are also constant.
To keep the model parsimonious we assume that the GDP and the money supply
are not correlated:
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We also assume that there is no correlation between variables across the
two countries:
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The following notations will be used:
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Proposition 1. In the economy characterized by the equations (1)-(5) we

have that:
a) the real interest rate is constant:

r=¢+a(y) ®)
b) the nominal interest rate is constant:
R=¢+al(7/—1)+um—0'f1 ©)]
c¢) the real price of a Home equity share:
S, = 2V, 1
RN Y (10)
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d) the dynamics of the real exchange rate is:
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¢) the real exchange rate at T is given by:
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f) the dynamics of the nominal exchange rate is:
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g) the nominal exchange rate at T is given by:
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Proof:

Equations (8), (9) and (10) follow from Proposition 1 in Necula (2008).
The price of the Home equity share is consistent with Naik and Lee (1990) that use
a one country model with jumps in GDP.
The dynamics in (11) and (13) follow Proposition 4 in Necula (2008).
Equation (12) and (14) are a straightforward application of the Ito Lemma
for Ine, and Ine respectively.
q.e.d.



It is important to point out that in the case of a logarithmic utility function
(i.e.y = 7" =1) there are no jumps in the nominal exchange rate and the dynamics
is influenced exclusively by the money supply.

Proposition 2. In the economy characterized by the equations (1)-(5) we
have that the distribution of the log return of the nominal exchange rate is a
mixture of normal distributions with a pdf given by:

Pine; —ine, (X):;z p(n)p*(n*}pmn* (X) (15)

where ¢ . is the pdf of a normal distribution
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Proof:

From equation (14) one can observe the distribution of ln(eT)—ln(et)
conditioned by the fact that there were N Home jumps and n' Foreign jumps is
given by:
an—T\ N; =N, =n,N; =N; =n" ~ Norm((z, - . T = t),(02 + &2 JT 1)) (18)
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Equation (15) is a straightforward application of Bayes Theorem.
q-e.d.



3. THE FUNDAMENTAL ASSET PRICING EQUATIONS

Proposition 3. In the economy characterized by the equations (1)-(5) we
have the following fundamental asset pricing equations:
a) if the asset pays real dividends depending only on the Home output

(ie.0 (y)) then the real price q(t, y) of the asset is the solution of

the PIDE:
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b) if the asset pays real dividends depending both on the Home output
and of the Foreign output (i.e. §(y, y*,e)) then the real price

q(t, A y*,e) of the asset is the solution of the PIDE:

5 : 0 (o ecfos
Eqnté(y,y,g)+(yy—/1E[J]—7a§)y5q+(,uy—/1E[J o
tllr-r)ra)-ail 2

2 2
o gy Chedlrer e b

X o (20)
+yo,Ye ay;g—y JY'e 8y*gg

: N (o

. ﬂjq(y(ﬂx),y <(91(1++X;)) aly.y ’g)¢J(x)dx

+ﬂj[q(y, (1+x),e(l+x)” ) q(y,y*,g)]rpf(x)dx:rq

c) if the asset pays nominal dividends depending only on the Home
variables (i.e. F(y,m)) then the nominal price Q(t, y,m) of the
asset is the solution of the PIDE:
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d) if the asset pays nominal dividends depending both on the Home
and Foreign variables (i.e. F(y,m,y*,m*,e)) then the nominal

price Q(t, y,m, y* R m*,e) of the asset is the solution of the PIDE:

+T(y,m,y"m",e)+(u, - AE[3]-(y-1)o? -0 )y% (- 7E[3

+(,um —O'é)ﬂ@+,u;m*67Q*+[(R— R*)+ az(}/—l)—a;(j/* —1)k@

o)
at

. 0Q
"

0? 1 w2 20° 1 0? 1 2 207
fyz 8y? P y2 2 ? Eafmzasz Eamz 26?2
v i (22)
1
+5[( i _1)20
2

+(y 1o, yeayg amme ( ~1)o7y'e ;zm*e;n%e

L+x)m,y",me(l+x)™" J-Qly,m,y",m", e
qu(w by (1<+X)) )-aly.my )%(X)dx

| lymy 1+ xhm 1407 )-ly.m. ' ) (k=R

Proof:

Using Ito Lemma for q(t, y) we get the following dynamics for the asset
price:
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From Proposition 3 in Necula (2008) we have that the expected return is
given by:
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Equation (19) follows from (23) and (24).
If the asset pays real dividends depending both on the Home output and of

the Foreign output we apply the Ito Lemma to the function q(t, Y, y*,g):
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In order to get equation (20), we use the results from Proposition 3 in
Necula (2008) regarding the expected return:
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If the asset pays nominal dividends depending only on the Home variables
we use the Ito Lemma to a function of the form Q('[ y,m )
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Again from Proposition 3 in Necula (2008) the nominal expected return is:
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If the asset pays nominal dividends depending both on the Home and
Foreign variables we use Ito Lemma for a function Q(t, y,m, y*, m*,e :

e LY 47 2
. om \m); om m )

L, j L1 10°Q fdy") | 1 azQez(dejz
Tt e ), 2 yC Zay*zy y ), 20 \e),

0’

2(dm +1 0’Q m™2 dy*

m* m 2ome y' ),

( M j+ "Q e(d{*j[dej (29)
e ). ay e AN

0
£2e(2)2) S
omaoe m)\e ), oyoe e
+[Q(y(1+J),m,y*,m*,e(1+J)(" )—Q(y,m,y*,m*,e)]dN
+[Q(y,m,y*(1+J*),m*,e(1+J*)(fl)j—Q(y,m,y*,m*,e)}dN*

1
2

In equilibrium the expected return is (Proposition 3 in Necula, 2008):
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It is straightforward to prove that if the asset pays a cash-flow
F(y, m, y*, m*,e): I, (y, m)+ el: (y*, m*), then the price of the financial asset is

given by Q(t, y,m,y", m*,e)z Qy (t,y,m)+eQ. (t, y m*), where Q,, and Q.
are the solutions of the equation (21) written for Home, and Foreign respectively.



4. PRICING EXCHANGE RATE OPTIONS

Consider a call exchange rate option with maturity T =t+7 and strike
price K. Using Corollary 1 in Necula (2008), the price of this contingent claim is:
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Proposition 4. In the economy characterized by the equations (1)-(5) the
price of an exchange rate call option is given by:
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and d)() is the cdf of the standard normal distribution.

Proof:

Using Bayes Theorem the equation (31) can be written:
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Using equations (14) and (18) the nominal exchange rate at T is given by:

e =6 exp{(,un -z, )f}exp{(an X-G. )T)\/?} (38)
where
X, X iid. Norm(0,1) (39)
We also have that:
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The nominal exchange rate at the maturity of the option is:
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First we evaluate the following conditional expectation:
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Analogously, in order to evaluate:
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where
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Corollary 1. In the economy characterized by the equations (1)-(5) the
price of an exchange rate call option has the following closed form representation:

C, =€, exp{-R'(T —t){TT, K exp{- R(T —t)!1I, (54)

where
—2

I, = ZZ p(n)p*(n*)exp{— [ﬁn* - 0-2“* - R*}}Q(dl,n,n*) (55)

m, = zﬂ:; p(n)p*(n*)exp{— (,un —% - R]r}q)(dz,n’n*) (56)

5. CONCLUSION

In this paper we developed a framework for asset pricing in the context of
the general equilibrium model in Necula (2008). We analyzed a benchmark
specification of this model consisting of constant growth rates and volatilities for
the output and the money supply, and of log-normal amplitude of the jumps.

The dynamics equation of the nominal exchange rate depends on the real
and nominal sectors of the two countries. The theorised distribution of the

14



logarithm of the nominal exchange rate is a mixture of normal distributions, and is
therefore leptokurtic.

We derived the fundamental evaluation PIDE for four different classes of
assets. We also obtained a closed-form formula for pricing exchange rate call
options in the context of this benchmark two-country economy.
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