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1. INTRODUCTION 

 
 
 
In the context of the classical models for valuing options (Black and 

Scholes, 1973; Merton, 1973a) the derivative is redundant since it can be replicated 
using other existing assets (i.e. the underlying and the risk-free bond). These 
market models are complete so that there is only one risk neutral measure and 
consequently only one fair price of the derivative. The disadvantage of these 
models is the assumption that the returns are normally distributed. To account for 
the high kurtosis of the empirical distribution of returns, several models based on 
Levy processes with jumps were developed. But in these cases the market models 
are not complete and the risk neutral measure is not unique. Therefore it is difficult 
to compute the fair price of the derivative. A solution of this problem is to evaluate 
the derivative in the context of a general equilibrium model taking explicitly into 
account the risk premium.  

In this paper we develop a framework for asset pricing in the context of the 
general equilibrium model in Necula (2008). We analyze a benchmark 
specification of this model consisting of constant growth rates and volatilities for 
the output and the money supply, and of log-normal amplitude of the jumps. Using 
this specification we deduce the fundamental evaluation equations for financial 
assets, the dynamics of the real and of the nominal exchange rates and a new 
formula for evaluating exchange rate options.  

This paper is organized as follows: in the second section we present the 
hypotheses of the benchmark model and we obtain the probability distribution of 
the nominal exchange rate. In the third section we focus on the fundamental 
evaluation equations for different types of assets. In the forth section we deal with 
the particular case of currency derivatives and obtain a new formula for pricing 
exchange rate options. The final section concludes. 
 

 
2. THE MODEL 
 
We consider a benchmark economy build upon the framework developed 

in Necula (2008). The two goods utility function is separable consisting of the sum 
of two CRRA one good utility functions with different risk aversion parameters: 
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The growth rate and the volatility of the output are constant:  
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where the jumps amplitude is log-normally distributed: 
 ( ) ( )2,~1ln JJNormJ σμ+  (3) 
 
The growth rate and the volatility of the money supply are also constant. 

To keep the model parsimonious we assume that the GDP and the money supply 
are not correlated: 
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We also assume that there is no correlation between variables across the 

two countries: 
 0   ,0 ** == mmyy dddd ωωωω  (5) 
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Proposition 1. In the economy characterized by the equations (1)-(5) we 

have that: 
a) the real interest rate is constant: 

 ( )γφ 1ar +=  (8) 
 
b) the nominal interest rate is constant: 
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1 1 mmaR σμγφ −+−+=  (9) 

 
c) the real price of a Home equity share: 
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d) the dynamics of the real exchange rate is: 
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e) the real exchange rate at T  is given by: 
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f) the dynamics of the nominal exchange rate is: 
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g) the nominal exchange rate at T  is given by: 
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Proof: 
 
Equations (8), (9) and (10) follow from Proposition 1 in Necula (2008). 

The price of the Home equity share is consistent with Naik and Lee (1990) that use 
a one country model with jumps in GDP. 

The dynamics in (11) and (13) follow Proposition 4 in Necula (2008).  
Equation (12) and (14) are a straightforward application of the Ito Lemma 

for εln , and eln respectively. 
q.e.d.  
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It is important to point out that in the case of a logarithmic utility function 
(i.e. 1* == γγ ) there are no jumps in the nominal exchange rate and the dynamics 
is influenced exclusively by the money supply. 

 
Proposition 2. In the economy characterized by the equations (1)-(5) we 

have that the distribution of the log return of the nominal exchange rate is a 
mixture of normal distributions with a pdf given by: 
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Proof: 
 
From equation (14) one can observe the distribution of ( ) ( )tT ee lnln −  

conditioned by the fact that there were n  Home jumps and *n  Foreign jumps is 
given by:  
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Equation (15) is a straightforward application of Bayes Theorem.  

q.e.d. 
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3. THE FUNDAMENTAL ASSET PRICING EQUATIONS 
 
 
Proposition 3. In the economy characterized by the equations (1)-(5) we 

have the following fundamental asset pricing equations: 
a) if the asset pays real dividends depending only on the Home output 

(i.e. ( )yδ ) then the real price ( )ytq ,  of the asset is the solution of 
the PIDE: 
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b) if the asset pays real dividends depending both on the Home output 

and of the Foreign output (i.e. ( )εδ ,, *yy ) then the real price 
( )ε,,, *yytq  of the asset is the solution of the PIDE: 
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c) if the asset pays nominal dividends depending only on the Home 

variables (i.e. ( )my,Γ ) then the nominal price ( )mytQ ,,  of the 
asset is the solution of the PIDE: 
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d) if the asset pays nominal dividends depending both on the Home 

and Foreign variables (i.e. ( )emymy ,,,, **Γ ) then the nominal 

price ( )emymytQ ,,,,, **  of the asset is the solution of the PIDE: 
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Proof: 
 
Using Ito Lemma for ( )ytq ,  we get the following dynamics for the asset 

price: 
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From Proposition 3 in Necula (2008) we have that the expected return is 

given by: 
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Equation (19) follows from (23) and (24). 
If the asset pays real dividends depending both on the Home output and of 

the Foreign output we apply the Ito Lemma to the function ( )ε,,, *yytq : 
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In order to get equation (20), we use the results from Proposition 3 in 

Necula (2008) regarding the expected return: 
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If the asset pays nominal dividends depending only on the Home variables 

we use the Ito Lemma to a function of the form ( )mytQ ,, : 
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Again from Proposition 3 in Necula (2008) the nominal expected return is: 
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If the asset pays nominal dividends depending both on the Home and 

Foreign variables we use Ito Lemma for a function ( )emymytQ ,,,,, ** : 
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In equilibrium the expected return is (Proposition 3 in Necula, 2008): 
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q.e.d. 
 
It is straightforward to prove that if the asset pays a cash-flow 

( ) ( ) ( )**** ,,,,,, myemyemymy FH Γ+Γ=Γ , then the price of the financial asset is 
given by ( ) ( ) ( )**** ,,,,,,,,, myteQmytQemymytQ FH += , where HQ  and FQ  
are the solutions of the equation (21) written for Home, and Foreign respectively. 
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4. PRICING EXCHANGE RATE OPTIONS 
 
Consider a call exchange rate option with maturity τ+= tT  and strike 

price K . Using Corollary 1 in Necula (2008), the price of this contingent claim is: 
 

( ) ( ) ( )
( ) ( )⎥

⎦

⎤
⎢
⎣

⎡
−

′
′

−== 0,maxexp,,,, ** Ke
m
m

yuy
yuyEmmyyeCC T

T

t

tt

TT
ttttttt φτ  (31) 

 
Proposition 4. In the economy characterized by the equations (1)-(5) the 

price of an exchange rate call option is given by: 
 ( ) ( ) *

*
,

**  
nn

n n
t CnpnpC ∑∑=  (32) 

where 
 

( ) ( )**

*

** ,,2

2

,,1

2

, 2
exp

2
exp

nn
n

nnn
n

ntnn
dKdeC Φ

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−Φ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= τσμτ
σ

μ  (33) 

 

 
( )

τσσ

τσμμ

22

2

,,1
*

*

*

 ln

nn

nnn
t

nn
K
e

d
+

+−+
=  (34) 

 

 
( )

τσσ

τσμμ

22

2

,,2
*

*

*

 ln

nn

nnn
t

nn
K
e

d
+

+−+
=  (35) 

 
and ( )⋅Φ  is the cdf of the standard normal distribution. 
 
Proof: 
 
Using Bayes Theorem the equation (31) can be written: 
 
 ( ) ( ) *

*
,

**  nn
n n

t CnpnpC ∑∑=  (36) 

where 
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( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
=−=−

′
′

−−

⎥
⎦

⎤
⎢
⎣

⎡
=−=−

′
′

−=

⎥
⎦

⎤
⎢
⎣

⎡
=−=−−

′
′

−=

≥

≥

***

***

***
,

,|1exp           

,|1exp        

,|0,maxexp*

nNNnNN
m
m

yuy
yuyKE

nNNnNNe
m
m

yuy
yuyE

nNNnNNKe
m
m

yuy
yuyEC

tTtTKe
T

t

tt

TT
t

tTtTKeT
T

t

tt

TT
t

tTtTT
T

t

tt

TT
tnn

T

T

φτ

φτ

φτ

 (37) 

 
Using equations (14) and (18) the nominal exchange rate at T  is given by: 
 ( ){ } ( ){ }τσστμμ XXee

nnnntT *expexp −−=  (38) 
where 
 ( )1,0  ...  , NormdiiXX  (39) 
 
We also have that: 

 ( ) ( )
( ) ( ) ( )τστμφτ X

m
m

yuy
yuy

nn
T

t

tt

TT −−=
′
′

− expexpexp  (40) 

 
We denote: 

 ( )1,0~:
22
*

* Norm
XX

Z
nn

nn

σσ

σσ

+

−
=  (41) 

 
The nominal exchange rate at the maturity of the option is: 
 

 ( ){ } { }τσστμμ Zee
nnnntT
22
*expexp +−=  (42) 

 
First we evaluate the following conditional expectation: 
 

( ){ } ( )
( )
( ) ( )[ ]ατστμ

φ

−≥

≥

−−=

=⎥
⎦

⎤
⎢
⎣

⎡
=−=−

′
′

−−

Znn

tTtTKe
T

t

tt

TT
t

XE

nNNnNN
m
m

yuy
yuytTE

T

1expexp                          

,|1exp ***

 (43) 

where 
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( )

τσσ

τμμ
α

22
*

ln

nn

nn
t

K
e

+

−+
=  (44) 

 
It is obvious that: 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
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⎛
1
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,

0
0

~, 2 ρ
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NormZX  (45) 

where 
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n
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+

=  (46) 

 
It follows that: 
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But, 
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 (47) 

 
On the other hand: 
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But it is straightforward that: 
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We have that: 
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Analogously, in order to evaluate:  
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one can use that 
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where 
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q.e.d. 

 
Corollary 1. In the economy characterized by the equations (1)-(5) the 

price of an exchange rate call option has the following closed form representation: 
 
 ( ){ } ( ){ } 21

*  exp exp Π−−−Π−−= tTRKtTReC tt  (54) 
 
where 
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5. CONCLUSION 
 

In this paper we developed a framework for asset pricing in the context of 
the general equilibrium model in Necula (2008). We analyzed a benchmark 
specification of this model consisting of constant growth rates and volatilities for 
the output and the money supply, and of log-normal amplitude of the jumps.  

The dynamics equation of the nominal exchange rate depends on the real 
and nominal sectors of the two countries. The theorised distribution of the 
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logarithm of the nominal exchange rate is a mixture of normal distributions, and is 
therefore leptokurtic. 

We derived the fundamental evaluation PIDE for four different classes of 
assets. We also obtained a closed-form formula for pricing exchange rate call 
options in the context of this benchmark two-country economy. 
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